Selective photocatalytic aerobic oxidative cleavage of lignin C–O bonds over sodium lignosulfonate modified Fe3O4/TiO2

[1]  Feng Wang,et al.  Radical generation and fate control for photocatalytic biomass conversion , 2022, Nature Reviews Chemistry.

[2]  B. Weckhuysen,et al.  Upcycling biomass waste into Fe single atom catalysts for pollutant control , 2022, Journal of Energy Chemistry.

[3]  Changzhi Li,et al.  Scission of C–O and C–C linkages in lignin over RuRe alloy catalyst , 2021, Journal of Energy Chemistry.

[4]  Xuebing Zhao,et al.  Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage , 2021 .

[5]  Feng Wang,et al.  Catalytic Lignin Depolymerization to Aromatic Chemicals. , 2020, Accounts of chemical research.

[6]  Jianghua He,et al.  Redox-neutral photocatalytic strategy for selective C-C bond cleavage of lignin and lignin models via PCET process. , 2019, Science bulletin.

[7]  Jiayu Xin,et al.  Metal-Free Photochemical Degradation of Lignin-Derived Aryl Ethers and Lignin by Autologous Radicals via Ionic Liquids Induction. , 2019, ChemSusChem.

[8]  Zhaofu Fei,et al.  Metal-Sulfide Catalysts Derived from Lignosulfonate and their Efficient Use in Hydrogenolysis. , 2019, ChemSusChem.

[9]  Xiao-hui Liu,et al.  Breaking the Limit of Lignin Monomer Production via Cleavage of Interunit Carbon–Carbon Linkages , 2019, Chem.

[10]  L. Yang,et al.  Revealing Structural Differences between Alkaline and Kraft Lignins by HSQC NMR , 2019, Industrial & Engineering Chemistry Research.

[11]  Matthias Wessling,et al.  Carboxylic Acids Production via Electrochemical Depolymerization of Lignin , 2019, ChemElectroChem.

[12]  Qinghong Zhang,et al.  Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions , 2018, Nature Catalysis.

[13]  Ali Hussain Motagamwala,et al.  An “ideal lignin” facilitates full biomass utilization , 2018, Science Advances.

[14]  Jimeng Sun,et al.  SUSTain , 2018, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

[15]  I. Angelidaki,et al.  TiO2–AgCl Based Nanoparticles for Photocatalytic Production of Phenolic Compounds from Lignocellulosic Residues , 2018 .

[16]  A. Xu,et al.  Hydrogenolysis and hydrogenation of β-O-4 ketones by a simple photocatalytic hydrogen transfer reaction , 2018 .

[17]  Falong Jia,et al.  Oxygen Vacancy-Mediated Photocatalysis of BiOCl: Reactivity, Selectivity, and Perspectives. , 2018, Angewandte Chemie.

[18]  Xiaoqin Yan,et al.  The interplay of sulfur doping and surface hydroxyl in band gap engineering: Mesoporous sulfur-doped TiO2 coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification , 2017 .

[19]  Jianmin Lu,et al.  Yin and Yang Dual Characters of CuOx Clusters for C–C Bond Oxidation Driven by Visible Light , 2017 .

[20]  Huan Xu,et al.  Combination Mechanism and Enhanced Visible-Light Photocatalytic Activity and Stability of CdS/g-C3N4 Heterojunctions , 2017 .

[21]  Ydna M. Questell-Santiago,et al.  Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization , 2016, Science.

[22]  M. Yoon,et al.  Core-Shell Ferromagnetic Nanorod Based on Amine Polymer Composite (Fe3O4@DAPF) for Fast Removal of Pb(II) from Aqueous Solutions. , 2015, ACS applied materials & interfaces.

[23]  Hongbin Cao,et al.  Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. , 2015, Chemosphere.

[24]  C. Battaglia,et al.  Strain-induced indirect to direct bandgap transition in multilayer WSe2. , 2014, Nano letters.

[25]  Marjorie A. Langell,et al.  XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature , 2014 .

[26]  Gerald A. Tuskan,et al.  Lignin Valorization: Improving Lignin Processing in the Biorefinery , 2014, Science.

[27]  C. Stephenson,et al.  A photochemical strategy for lignin degradation at room temperature. , 2014, Journal of the American Chemical Society.

[28]  Ning Zhang,et al.  Catalytic delignification of sugarcane bagasse in the presence of acidic ionic liquids , 2013 .

[29]  J. Wen,et al.  Recent Advances in Characterization of Lignin Polymer by Solution-State Nuclear Magnetic Resonance (NMR) Methodology , 2013, Materials.

[30]  G. Palmisano,et al.  Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis , 2012 .

[31]  Fenglei Shen,et al.  Solvothermal synthesis of magnetic Fe3O4 microparticles via self-assembly of Fe3O4 nanoparticles , 2011 .

[32]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[33]  Paul B. Jones,et al.  Photochemistry of 1,n-dibenzyloxy-9,10-anthraquinones. , 2010, The Journal of organic chemistry.

[34]  B. Weckhuysen,et al.  The catalytic valorization of lignin for the production of renewable chemicals. , 2010, Chemical reviews.

[35]  A. Tsutsumi,et al.  Elucidation of the interaction among cellulose, xylan, and lignin in steam gasification of woody biomass , 2009 .

[36]  E. Amaro,et al.  Kinetics of elimination and distribution in blood and liver of biocompatible ferrofluids based on Fe3O4 nanoparticles: An EPR and XRF study , 2008 .

[37]  I. Mondragon,et al.  Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. , 2007, Bioresource technology.

[38]  Jianhui He,et al.  Structural analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass , 2007 .

[39]  Denise Handlarski Green , 2007, Definitions.

[40]  Misook Kang,et al.  Synthesis and characterization of Al-, Bi-, and Fe-incorporated mesoporous titanosilicate (MPTS) materials and their hydrophilic properties , 2005 .

[41]  Y. Köseoǧlu,et al.  ESR studies on superparamagnetic Fe3O4 nanoparticles , 2004 .

[42]  Richard J.A. Gosselink,et al.  Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy , 2004 .

[43]  E. Land,et al.  Interaction of melanin with carbon- and oxygen-centered radicals from methanol and ethanol. , 1995, Free radical biology & medicine.

[44]  Shubin Wu,et al.  Mechanism Study on Depolymerization of the α-O-4 Linkage Lignin Model Compound in Supercritical Ethanol System , 2019 .