Development of an ion gel membrane containing a CO2-philic ionic liquid in interpenetrating semi-crystalline and crosslinkable polymer networks

[1]  J. Ran,et al.  Binary Double Network-like Structure: An Effective Energy-Dissipation System for Strong Tough Hydrogel Design , 2023, Polymers.

[2]  E. Kamio,et al.  Fundamental investigation on the development of composite membrane with a thin ion gel layer for CO2 separation , 2022, Journal of Membrane Science.

[3]  Jeong‐Hoon Kim,et al.  Crystalline elastomeric block copolymer/ionic liquid membranes with enhanced mechanical strength and gas separation properties , 2022, Journal of Membrane Science.

[4]  E. Kamio,et al.  Tough ion gels composed of coordinatively crosslinked polymer networks using ZIF-8 nanoparticles as multifunctional crosslinkers. , 2022, Soft matter.

[5]  D. Grijpma,et al.  Structure–Property Relations in Semi‐crystalline Combinatorial Poly(urethane‐isocyanurate) Type Hydrogels , 2022, Polymer International.

[6]  E. Kamio,et al.  Novel Tough Ion-Gel-Based CO2 Separation Membrane with Interpenetrating Polymer Network Composed of Semicrystalline and Cross-Linkable Polymers , 2022, Industrial & Engineering Chemistry Research.

[7]  E. Kamio,et al.  Development of a Micro-Double-Network Ion Gel-Based CO2 Separation Membrane from Nonvolatile Network Precursors , 2021, Industrial & Engineering Chemistry Research.

[8]  Yapei Wang,et al.  Dynamic chemistry in ionic liquid-based conductor , 2021, Green Chemical Engineering.

[9]  A. Fuoco,et al.  Polymers of Intrinsic Microporosity and Thermally Rearranged Polymer Membranes for Highly Efficient Gas Separation , 2021, Separation and Purification Technology.

[10]  J. Ran,et al.  Rational Design of a High-Strength Tough Hydrogel from Fundamental Principles , 2021 .

[11]  P. Izák,et al.  A Review on Ionic Liquid Gas Separation Membranes , 2021, Membranes.

[12]  H. Tseng,et al.  Impacts of Green Synthesis Process on Asymmetric Hybrid PDMS Membrane for Efficient CO2/N2 Separation , 2021, Membranes.

[13]  B. Freeman,et al.  Glassy polymers: Historical findings, membrane applications, and unresolved questions regarding physical aging , 2020 .

[14]  T. Lodge,et al.  Preparation of Inorganic/Organic Double-Network Ion Gels Using a Cross-Linkable Polymer in an Open System , 2020 .

[15]  E. Kamio,et al.  Inorganic/organic double-network ion gel membrane with a high ionic liquid content for CO2 separation , 2020, Polymer Journal.

[16]  K. Urayama,et al.  Multiaxial Stress Relaxation of Dual-Cross-Link Poly(vinyl alcohol) Hydrogels. , 2019, ACS macro letters.

[17]  M. Ferrari,et al.  Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity , 2019, Energy & Environmental Science.

[18]  P. Moulin,et al.  Ionic liquids combined with membrane separation processes: A review , 2019, Separation and Purification Technology.

[19]  A. Fuoco,et al.  Temperature Dependence of Gas Permeation and Diffusion in Triptycene-Based Ultrapermeable Polymers of Intrinsic Microporosity. , 2018, ACS applied materials & interfaces.

[20]  F. Tavares,et al.  A molecular dynamics study of the solvation of carbon dioxide and other compounds in the ionic liquids [emim][B(CN)4] and [emim][NTf2] , 2018, Fluid Phase Equilibria.

[21]  Neil B. McKeown,et al.  Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers. , 2018, Chemical reviews.

[22]  J. Gong,et al.  Inorganic/Organic Double‐Network Gels Containing Ionic Liquids , 2017, Advanced materials.

[23]  E. Kamio,et al.  New approach for the fabrication of double-network ion-gel membranes with high CO2/N2 separation performance based on facilitated transport , 2017 .

[24]  Yongsheng Chen,et al.  Synthesis and gas transport properties of poly(ionic liquid) based semi-interpenetrating polymer network membranes for CO2/N2 separation , 2017 .

[25]  Christopher R. Mason,et al.  Effect of physical aging on the gas transport and sorption in PIM-1 membranes , 2017 .

[26]  E. Kamio,et al.  High CO2 separation performance of amino acid ionic liquid-based double network ion gel membranes in low CO2 concentration gas mixtures under humid conditions , 2017 .

[27]  B. Freeman,et al.  Analysis of the transport properties of thermally rearranged (TR) polymers and polymers of intrinsic microporosity (PIM) relative to upper bound performance , 2017 .

[28]  H. Park,et al.  High-Performance Polymers for Membrane CO2 /N2 Separation. , 2016, Chemistry.

[29]  Lin Zhu,et al.  Improvement of Mechanical Strength and Fatigue Resistance of Double Network Hydrogels by Ionic Coordination Interactions , 2016 .

[30]  M. Soroush,et al.  Physical aging of polyetherimide membranes , 2015 .

[31]  Hideto Matsuyama,et al.  An amino acid ionic liquid-based tough ion gel membrane for CO2 capture. , 2015, Chemical communications.

[32]  L. Neves,et al.  Supported Ionic Liquid Membranes and Ion-Jelly® Membranes with [BMIM][DCA]: Comparison of Its Performance for CO2 Separation , 2015, Membranes.

[33]  I. Pinnau,et al.  Energy‐Efficient Hydrogen Separation by AB‐Type Ladder‐Polymer Molecular Sieves , 2014, Advanced materials.

[34]  F. Rodríguez,et al.  Diffusion Coefficients of CO2 in Ionic Liquids Estimated by Gravimetry , 2014 .

[35]  S. Dai,et al.  Molecular Dynamics Simulation of Anion Effect on Solubility, Diffusivity, and Permeability of Carbon Dioxide in Ionic Liquids , 2014 .

[36]  T. Makino,et al.  CO2 Solubilities in Ammonium Bis(trifluoromethanesulfonyl)amide Ionic Liquids: Effects of Ester and Ether Groups , 2014 .

[37]  Á. Irabien,et al.  Acetate based Supported Ionic Liquid Membranes (SILMs) for CO2 separation: Influence of the temperature , 2014 .

[38]  Pei Li,et al.  Temperature dependence of gas sorption and permeation in PIM-1 , 2014 .

[39]  S. Dai,et al.  Structure and dynamics of CO2 and N2 in a tetracyanoborate based ionic liquid. , 2014, Physical chemistry chemical physics : PCCP.

[40]  Y. Lee,et al.  Sorption and transport of small gas molecules in thermally rearranged (TR) polybenzoxazole membranes based on 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane (bisAPAF) and 4,4 '-hexafluoroisopropylidene diphthalic anhydride (6FDA) , 2013 .

[41]  L. Shao,et al.  Recent progress in the design of advanced PEO-containing membranes for CO2 removal , 2013 .

[42]  Tai‐Shung Chung,et al.  Gas sorption and permeation in PIM-1 , 2013 .

[43]  E. Kamio,et al.  A facilitated transport ion-gel membrane for propylene/propane separation using silver ion as a carrier , 2013 .

[44]  Y. Yampolskii,et al.  Correlation of Gas Permeability and Diffusivity with Selectivity: Orientations of the Clouds of the Data Points and the Effects of Temperature , 2013 .

[45]  T. Lodge,et al.  ABA-triblock copolymer ion gels for CO2 separation applications , 2012 .

[46]  S. Dai,et al.  High CO2 solubility, permeability and selectivity in ionic liquids with the tetracyanoborate anion , 2012 .

[47]  P. Izák,et al.  Gas transport properties of Pebax®/room temperature ionic liquid gel membranes , 2012 .

[48]  Pei Li,et al.  PVDF/ionic liquid polymer blends with superior separation performance for removing CO2 from hydrogen and flue gas , 2012 .

[49]  S. Kawi,et al.  High-Performance Thermally Self-Cross-Linked Polymer of Intrinsic Microporosity (PIM-1) Membranes for Energy Development , 2012 .

[50]  M. Watanabe,et al.  Polymers in Ionic Liquids: Dawn of Neoteric Solvents and Innovative Materials , 2012 .

[51]  Sheng Dai,et al.  Understanding the high solubility of CO2 in an ionic liquid with the tetracyanoborate anion. , 2011, The journal of physical chemistry. B.

[52]  K. Shahidi,et al.  Pure and mixed gas permeation through a composite polydimethylsiloxane membrane , 2011 .

[53]  B. Freeman,et al.  Influence of temperature on the upper bound: Theoretical considerations and comparison with experimental results , 2010 .

[54]  Haiqing Lin,et al.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .

[55]  B. Freeman,et al.  Influence of previous history on physical aging in thin glassy polymer films as gas separation membranes , 2010 .

[56]  Luísa A. Neves,et al.  Gas permeation studies in supported ionic liquid membranes , 2010 .

[57]  R. J. Gaymans,et al.  Subambient temperature CO(2) and light gas permeation through segmented block copolymers with tailored soft phase. , 2010, ACS applied materials & interfaces.

[58]  Patricia Luis,et al.  Facilitated transport of CO2 and SO2 through Supported Ionic Liquid Membranes (SILMs) , 2009 .

[59]  K. Shahidi,et al.  Preparation and characterization of a composite PDMS membrane on CA support , 2009 .

[60]  L. Neves,et al.  Separation of biohydrogen by supported ionic liquid membranes , 2009 .

[61]  T. Sakai,et al.  Structure Characterization of Tetra-PEG Gel by Small-Angle Neutron Scattering , 2009 .

[62]  A. Car,et al.  Tailor‐made Polymeric Membranes based on Segmented Block Copolymers for CO2 Separation , 2008 .

[63]  L. Robeson,et al.  The upper bound revisited , 2008 .

[64]  Andrew L. Ferguson,et al.  Diffusivities of Gases in Room-Temperature Ionic Liquids: Data and Correlations Obtained Using a Lag-Time Technique , 2005 .

[65]  B. Freeman,et al.  MATERIALS SELECTION GUIDELINES FOR MEMBRANES THAT REMOVE CO2 FROM GAS MIXTURES , 2005 .

[66]  Sheng Dai,et al.  Examination of the Potential of Ionic Liquids for Gas Separations , 2005 .

[67]  Paul Scovazzo,et al.  Gas separations using non-hexafluorophosphate [PF6]− anion supported ionic liquid membranes , 2004 .

[68]  Joan F. Brennecke,et al.  Thermophysical Properties of Imidazolium-Based Ionic Liquids , 2004 .

[69]  Y. Tsujita Gas sorption and permeation of glassy polymers with microvoids , 2003 .

[70]  C. Lindsay,et al.  Designed incorporation of semi-crystalline domains into structured latex particles via solvent-aided emulsion polymerization , 2022, Polymer Chemistry.

[71]  Xiangping Zhang,et al.  Combination of ionic liquids with membrane technology: a new approach for CO2 separation , 2016 .

[72]  Brian J. Briscoe,et al.  Combining ionic liquids and supercritical fluids: in situ ATR-IR study of CO2 dissolved in two ionic liquids at high pressures , 2000 .

[73]  H. Kumazawa,et al.  Permeation of binary gas mixture through glassy polymer membranes with concentration-dependent diffusivities , 1992 .