A bivariate first-order signed integer-valued autoregressive process

ABSTRACT Bivariate integer-valued time series occur in many areas, such as finance, epidemiology, business etc. In this article, we present bivariate autoregressive integer-valued time-series models, based on the signed thinning operator. Compared to classical bivariate INAR models, the new processes have the advantage to allow for negative values for both the time series and the autocorrelation functions. Strict stationarity and ergodicity of the processes are established. The moments and the autocovariance functions are determined. The conditional least squares estimator of the model parameters is considered and the asymptotic properties of the obtained estimators are derived. An analysis of a real dataset from finance and a simulation study are carried out to assess the performance of the model.

[1]  Geneviève Gauthier,et al.  Convergence forte des estimateurs des paramètres d'un processus GENAR(p) , 1994 .

[2]  Andréas Heinen,et al.  Multivariate autoregressive modeling of time series count data using copulas , 2007 .

[3]  D. Karlis,et al.  Bayesian analysis of the dierences of count data , 2005 .

[4]  Alain Latour,et al.  The Multivariate Ginar(p) Process , 1997, Advances in Applied Probability.

[5]  Eddie McKenzie,et al.  Discrete variate time series , 2003 .

[6]  J. Strackee,et al.  The frequency distribution of the difference between two Poisson variates , 1962 .

[7]  J. G. Skellam The frequency distribution of the difference between two Poisson variates belonging to different populations. , 1946, Journal of the Royal Statistical Society. Series A.

[8]  Kurt Brännäs,et al.  A Bivariate Integer Valued Allocation Model for Guest Nights in Hotels and Cottages , 2000 .

[9]  C. C. Heyde,et al.  Estimation of Parameters from Stochastic Processes , 1980 .

[10]  A. Alzaid,et al.  On the Poisson difference distribution inference and applications. , 2010 .

[11]  Paul I. Nelson,et al.  On Conditional Least Squares Estimation for Stochastic Processes , 1978 .

[12]  Fw Fred Steutel,et al.  Discrete analogues of self-decomposability and stability , 1979 .

[13]  Fukang Zhu,et al.  Inference for INAR(p) processes with signed generalized power series thinning operator , 2010 .

[14]  Mohamed Alosh,et al.  FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .

[15]  Christian H. Weiß,et al.  Thinning operations for modeling time series of counts—a survey , 2008 .

[16]  Bonnie K. Ray,et al.  Regression Models for Time Series Analysis , 2003, Technometrics.

[17]  Dimitris Karlis,et al.  Bayesian modelling of football outcomes: using the Skellam's distribution for the goal difference , 2008 .

[18]  Ed. McKenzie,et al.  SOME SIMPLE MODELS FOR DISCRETE VARIATE TIME SERIES , 1985 .

[19]  Yousung Park,et al.  A non-stationary integer-valued autoregressive model , 2008 .

[20]  Dimitris Karlis,et al.  A bivariate INAR(1) process with application , 2011 .

[21]  Jürgen Franke,et al.  Multivariate First-Order Integer-Valued Autoregressions , 1993 .

[22]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[23]  Benjamin Kedem,et al.  Regression Models for Time Series Analysis: Kedem/Time Series Analysis , 2005 .

[24]  D. Karlis,et al.  Bayesian analysis of the differences of count data , 2006, Statistics in medicine.

[25]  A. M. M. Shahiduzzaman Quoreshi,et al.  Bivariate Time Series Modeling of Financial Count Data , 2006 .

[26]  Oleg Bondarenko Statistical Arbitrage and Securities Prices , 2002 .

[27]  M. Kachour,et al.  A p‐Order signed integer‐valued autoregressive (SINAR(p)) model , 2011 .

[28]  P. Hall,et al.  Martingale Limit Theory and its Application. , 1984 .

[29]  Li Yuan,et al.  THE INTEGER‐VALUED AUTOREGRESSIVE (INAR(p)) MODEL , 1991 .

[30]  Patrick Billingsley,et al.  Statistical inference for Markov processes , 1961 .

[31]  Stephen S. Wilson,et al.  Random iterative models , 1996 .

[32]  Alain Latour,et al.  An integer-valued bilinear type model , 2009 .

[33]  Robert C. Jung,et al.  Binomial thinning models for integer time series , 2006 .