Role of charge transfer state and host matrix in Eu3+-doped alkali and earth alkali fluoro-aluminoborate glasses
暂无分享,去创建一个
[1] M. Dramićanin,et al. Judd–Ofelt analysis of luminescence emission from Zn2SiO4:Eu3+ nanoparticles obtained by a polymer-assisted sol–gel method , 2011 .
[2] C. K. Jayasankar,et al. Local field dependent fluorescence properties of Eu3+ ions in a fluorometaphosphate laser glass , 2011 .
[3] Ping Huang,et al. Structure and luminescence of Eu3+ doped glass ceramics embedding ZnO quantum dots , 2010 .
[4] H. Seo,et al. Temperature-Dependent 5D0→7F0 Luminescence of Sm2+ Ions Doped in Alkaline Earth Borophosphate Glass , 2010 .
[5] Yuhua Wang,et al. Photoluminescence of BaGdB9O16:Eu3+ co-doped Al3+ or Sc3+ under UV-VUV excitation , 2009 .
[6] K. Machida,et al. Optical hole burning properties of europium-doped calcium bromide-based aluminoborate glasses , 2008 .
[7] M. Nogami,et al. New Hole‐Burning Observations in Eu3+‐Ion‐Doped Glasses , 2007 .
[8] K. Machida,et al. Highly stable persistent spectral hole burning in Eu3+ ions doped oxy-fluoride glasses of 30CaF2–10Al2O3–60B2O3 , 2007 .
[9] R. R. Reddy,et al. Absorption and emission properties of Eu3+ ions in Sodium fluoroborate glasses , 2007 .
[10] Lili Hu,et al. Judd–Ofelt intensity parameters of Er3+ doped mixed alkali aluminophosphate glasses , 2007 .
[11] Fang-tian You,et al. Application of original and modified Judd–Ofelt theories to the 1S0 state of Pr3+-doped SrAl12O19 and LaF3 , 2007 .
[12] T. Hayakawa,et al. Influences of Al3+ and Eu3+ concentration on PSHB properties of melt-quenched Al2O3–SiO2 glasses , 2006 .
[13] S. Buddhudu,et al. Emission analysis of Eu3+:Bi2O3–B2O3–R2O (R=Li,Na,K) glasses , 2004 .
[14] Akshaya Kumar,et al. Optical studies of Eu3+ ions doped in tellurite glass. , 2002, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[15] G. Rohrer. Structure and Bonding in Crystalline Materials , 2001 .
[16] M. Nogami,et al. Spectral hole burning of Eu3+-doped Al2O3-SiO2 glass prepared by melt quenching , 2001 .
[17] C. K. Jayasankar,et al. Optical spectroscopy of Eu3+ ions in lithium borate and lithium fluoroborate glasses , 2000 .
[18] D. Ehrt,et al. Tb3+ f–d absorption as indicator of the effect of covalency on the Judd–Ofelt Ω2 parameter in glasses , 1999 .
[19] I. Sildos,et al. Spectral Hole-Burning Study of Radiation-Induced Defects in Diamond , 1999 .
[20] Y. Messaddeq,et al. Optical transition probabilities and compositional dependence of Judd-Ofelt parameters of Er3+ ions in fluoroindate glass , 1995 .
[21] Masayuki Nogami,et al. Room temperature persistent spectra hole burning in Sm2+‐doped silicate glasses prepared by the sol‐gel process , 1995 .
[22] K. Hirao,et al. Room-temperature persistent hole burning of Sm(2+) in oxide glasses. , 1993, Optics letters.
[23] Leland C. Allen,et al. Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms , 1989 .
[24] T. Mossberg,et al. Time-domain frequency-selective optical data storage. , 1982, Optics letters.
[25] C. Brecher,et al. Laser-induced fluorescence line narrowing in Eu glass: a spectroscopic analysis of coordination structure , 1976 .
[26] C. Jørgensen. Modern aspects of ligand field theory , 1971 .
[27] B. Judd,et al. OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .
[28] G. S. Ofelt. Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .