Role of charge transfer state and host matrix in Eu3+-doped alkali and earth alkali fluoro-aluminoborate glasses

[1]  M. Dramićanin,et al.  Judd–Ofelt analysis of luminescence emission from Zn2SiO4:Eu3+ nanoparticles obtained by a polymer-assisted sol–gel method , 2011 .

[2]  C. K. Jayasankar,et al.  Local field dependent fluorescence properties of Eu3+ ions in a fluorometaphosphate laser glass , 2011 .

[3]  Ping Huang,et al.  Structure and luminescence of Eu3+ doped glass ceramics embedding ZnO quantum dots , 2010 .

[4]  H. Seo,et al.  Temperature-Dependent 5D0→7F0 Luminescence of Sm2+ Ions Doped in Alkaline Earth Borophosphate Glass , 2010 .

[5]  Yuhua Wang,et al.  Photoluminescence of BaGdB9O16:Eu3+ co-doped Al3+ or Sc3+ under UV-VUV excitation , 2009 .

[6]  K. Machida,et al.  Optical hole burning properties of europium-doped calcium bromide-based aluminoborate glasses , 2008 .

[7]  M. Nogami,et al.  New Hole‐Burning Observations in Eu3+‐Ion‐Doped Glasses , 2007 .

[8]  K. Machida,et al.  Highly stable persistent spectral hole burning in Eu3+ ions doped oxy-fluoride glasses of 30CaF2–10Al2O3–60B2O3 , 2007 .

[9]  R. R. Reddy,et al.  Absorption and emission properties of Eu3+ ions in Sodium fluoroborate glasses , 2007 .

[10]  Lili Hu,et al.  Judd–Ofelt intensity parameters of Er3+ doped mixed alkali aluminophosphate glasses , 2007 .

[11]  Fang-tian You,et al.  Application of original and modified Judd–Ofelt theories to the 1S0 state of Pr3+-doped SrAl12O19 and LaF3 , 2007 .

[12]  T. Hayakawa,et al.  Influences of Al3+ and Eu3+ concentration on PSHB properties of melt-quenched Al2O3–SiO2 glasses , 2006 .

[13]  S. Buddhudu,et al.  Emission analysis of Eu3+:Bi2O3–B2O3–R2O (R=Li,Na,K) glasses , 2004 .

[14]  Akshaya Kumar,et al.  Optical studies of Eu3+ ions doped in tellurite glass. , 2002, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[15]  G. Rohrer Structure and Bonding in Crystalline Materials , 2001 .

[16]  M. Nogami,et al.  Spectral hole burning of Eu3+-doped Al2O3-SiO2 glass prepared by melt quenching , 2001 .

[17]  C. K. Jayasankar,et al.  Optical spectroscopy of Eu3+ ions in lithium borate and lithium fluoroborate glasses , 2000 .

[18]  D. Ehrt,et al.  Tb3+ f–d absorption as indicator of the effect of covalency on the Judd–Ofelt Ω2 parameter in glasses , 1999 .

[19]  I. Sildos,et al.  Spectral Hole-Burning Study of Radiation-Induced Defects in Diamond , 1999 .

[20]  Y. Messaddeq,et al.  Optical transition probabilities and compositional dependence of Judd-Ofelt parameters of Er3+ ions in fluoroindate glass , 1995 .

[21]  Masayuki Nogami,et al.  Room temperature persistent spectra hole burning in Sm2+‐doped silicate glasses prepared by the sol‐gel process , 1995 .

[22]  K. Hirao,et al.  Room-temperature persistent hole burning of Sm(2+) in oxide glasses. , 1993, Optics letters.

[23]  Leland C. Allen,et al.  Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms , 1989 .

[24]  T. Mossberg,et al.  Time-domain frequency-selective optical data storage. , 1982, Optics letters.

[25]  C. Brecher,et al.  Laser-induced fluorescence line narrowing in Eu glass: a spectroscopic analysis of coordination structure , 1976 .

[26]  C. Jørgensen Modern aspects of ligand field theory , 1971 .

[27]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[28]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .