High-fidelity numerical simulation of solitons in the nerve axon

High-order accurate finite difference schemes are derived for a non-linear soliton model of nerve signal propagation in axons. Two types of well-posed boundary conditions are analysed. The boundary closures are based on the summation-by-parts (SBP) framework and the boundary conditions are imposed using a penalty (SAT) technique, to guarantee linear stability. The resulting SBP-SAT approximation is time-integrated with an explicit finite difference method. The accuracy and stability properties of the newly derived finite difference approximations are demonstrated for an analytic soliton solution.

[1]  Jason E. Hicken Output error estimation for summation-by-parts finite-difference schemes , 2012, J. Comput. Phys..

[2]  K Kusano,et al.  Rapid mechanical and thermal changes in the garfish olfactory nerve associated with a propagated impulse. , 1989, Biophysical journal.

[3]  J. Boussinesq,et al.  Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. , 1872 .

[4]  Michael J. Brennan,et al.  Numerical evaluation of high-order modes of vibration in uniform Euler–Bernoulli beams , 2007 .

[5]  J. Nordström,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2004, Journal of Scientific Computing.

[6]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[7]  T. Heimburg,et al.  On soliton propagation in biomembranes and nerves. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Jan Nordström,et al.  High-order accurate difference schemes for the Hodgkin-Huxley equations , 2012, J. Comput. Phys..

[9]  Magnus Svärd,et al.  On the order of accuracy for difference approximations of initial-boundary value problems , 2006, J. Comput. Phys..

[10]  Ken Mattsson,et al.  Stable and accurate second-order formulation of the shifted wave equation , 2009 .

[11]  Zhang,et al.  Soliton excitations in deoxyribonucleic acid (DNA) double helices. , 1987, Physical review. A, General physics.

[12]  Gianluca Iaccarino,et al.  Stable Boundary Treatment for the Wave Equation on Second-Order Form , 2009, J. Sci. Comput..

[13]  Jan Nordström,et al.  Stable, high order accurate adaptive schemes for long time, highly intermittent geophysics problems , 2014, J. Comput. Appl. Math..

[14]  S. Abarbanel,et al.  Asymptotically Stable Fourth-Order Accurate Schemes for the Diffusion Equation on Complex Shapes , 1997 .

[15]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[16]  Ken Mattsson,et al.  Diagonal-norm summation by parts operators for finite difference approximations of third and fourth derivatives , 2014, J. Comput. Phys..

[17]  Eli Turkel,et al.  A fourth-order accurate finite-difference scheme for the computation of elastic waves , 1986 .

[18]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[19]  Mark H. Carpenter,et al.  Stable and Accurate Interpolation Operators for High-Order Multiblock Finite Difference Methods , 2009, SIAM J. Sci. Comput..

[20]  HEINZ-OTTO KREISS,et al.  A Second Order Accurate Embedded Boundary Method for the Wave Equation with Dirichlet Data , 2005, SIAM J. Sci. Comput..

[21]  Giancarlo Ruocco,et al.  Optical spatial solitons in soft matter. , 2005, Physical review letters.

[22]  Gianluca Iaccarino,et al.  Stable and accurate wave-propagation in discontinuous media , 2008, J. Comput. Phys..

[23]  Ken Mattsson,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2012, J. Sci. Comput..

[24]  Ken Mattsson,et al.  Optimal diagonal-norm SBP operators , 2014, J. Comput. Phys..

[25]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .

[26]  Ken Mattsson,et al.  Acoustic Wave Propagation in Complicated Geometries and Heterogeneous Media , 2014, J. Sci. Comput..

[27]  S. H. Lui,et al.  Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts , 2011 .

[28]  Andrew D. Jackson,et al.  On the action potential as a propagating density pulse and the role of anesthetics , 2006 .

[29]  Jiri Kulda,et al.  Emergence of soliton chirality in a quantum antiferromagnet , 2005 .

[30]  David W. Zingg,et al.  Higher-order spatial discretization for turbulent aerodynamic computations , 2001 .

[31]  L. Carr,et al.  Quantum entangled dark solitons formed by ultracold atoms in optical lattices. , 2007, Physical review letters.

[32]  H. Kreiss,et al.  Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations , 1974 .

[33]  Gilbert Strang,et al.  Accurate partial difference methods , 1964 .

[34]  D. Schötzau,et al.  Interior penalty discontinuous Galerkin method for Maxwell's equations , 2007 .

[35]  Ursula van Rienen,et al.  A Comparison of the Hodgkin–Huxley Model and the Soliton Theory for the Action Potential in Nerves , 2012 .

[36]  Tomas Edvinsson,et al.  High-fidelity numerical solution of the time-dependent Dirac equation , 2014, J. Comput. Phys..

[37]  H. Kreiss,et al.  Comparison of accurate methods for the integration of hyperbolic equations , 1972 .

[38]  Andrew D. Jackson,et al.  Towards a thermodynamic theory of nerve pulse propagation , 2009, Progress in Neurobiology.

[39]  Magnus Svärd,et al.  Stable and accurate schemes for the compressible Navier-Stokes equations , 2008, J. Comput. Phys..

[40]  Marios A. Christou Interaction of solitons in a Boussinesq equation with dissipation , 2013, Int. J. Comput. Math..

[41]  Bogdan Damski,et al.  Soliton creation during a Bose-Einstein condensation. , 2009, Physical review letters.

[42]  A. D. Jackson,et al.  The stability of solitons in biomembranes and nerves , 2005, The European physical journal. E, Soft matter.

[43]  John C. Strikwerda HIGH‐ORDER‐ACCURATE SCHEMES FOR INCOMPRESSIBLE VISCOUS FLOW , 1997 .

[44]  S. M. Wiedemann Natural frequencies and mode shapes of arbitrary beam structures with arbitrary boundary conditions , 2007 .

[45]  Jan S. Hesthaven,et al.  A Stable Penalty Method for the Compressible Navier-Stokes Equations: III. Multidimensional Domain Decomposition Schemes , 1998, SIAM J. Sci. Comput..

[46]  Anna Nissen,et al.  Stable Difference Methods for Block-Oriented Adaptive Grids , 2014, J. Sci. Comput..