Speeding up quantum circuits simulation using ZX-Calculus

We present a simple and efficient way to reduce the contraction cost of a tensor network to simulate a quantum circuit. We start by interpreting the circuit as a ZX-diagram. We then use simplification and local complementation rules to sparsify it. We find that optimizing graph-like ZX-diagrams improves existing state of the art contraction cost by several order of magnitude. In particular, we demonstrate an average contraction cost 1180 times better for Sycamore circuits of depth 20, and up to 4200 times better at peak performance.

[1]  Trevor Vincent,et al.  Jet: Fast quantum circuit simulations with parallel task-based tensor-network contraction , 2021, Quantum.

[2]  Y. Alexeev,et al.  Tensor Network Quantum Simulator With Step-Dependent Parallelization , 2020, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE).

[3]  Lei Deng,et al.  Fast Search of the Optimal Contraction Sequence in Tensor Networks , 2021, IEEE Journal of Selected Topics in Signal Processing.

[4]  Keisuke Fujii,et al.  Qulacs: a fast and versatile quantum circuit simulator for research purpose , 2020, Quantum.

[5]  S. Kourtis,et al.  Hyper-optimized tensor network contraction , 2020, Quantum.

[6]  Bo Yuan,et al.  Classical Simulation of Quantum Supremacy Circuits , 2020, 2005.06787.

[7]  Fabio Baruffa,et al.  Intel Quantum Simulator: a cloud-ready high-performance simulator of quantum circuits , 2020, Quantum Science and Technology.

[8]  Simon Perdrix,et al.  Completeness of the ZX-Calculus , 2019, Log. Methods Comput. Sci..

[9]  Aleks Kissinger,et al.  Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus , 2019, Quantum.

[10]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[11]  Moshe Y. Vardi,et al.  Efficient Contraction of Large Tensor Networks for Weighted Model Counting through Graph Decompositions , 2019, ArXiv.

[12]  Bryan O'Gorman,et al.  Parameterization of Tensor Network Contraction , 2019, TQC.

[13]  Mark Howard,et al.  Simulation of quantum circuits by low-rank stabilizer decompositions , 2018, Quantum.

[14]  Travis S. Humble,et al.  Benchmarking treewidth as a practical component of tensor network simulations , 2018, PloS one.

[15]  Jason Morton,et al.  Tensor Network Contractions for #SAT , 2014, Journal of Statistical Physics.

[16]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[17]  R. Jozsa,et al.  Matchgates and classical simulation of quantum circuits , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[19]  Yaoyun Shi,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2005, SIAM J. Comput..

[20]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[21]  B. Coecke,et al.  A graphical calculus for quantum observables , 2007 .

[22]  Vibhav Gogate,et al.  A Complete Anytime Algorithm for Treewidth , 2004, UAI.

[23]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[24]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.