An Embroidered Two-Dimensional Chipless Strain Sensor for Wireless Structural Deformation Monitoring

A wireless chipless sensor for structural deformation monitoring is proposed. The sensor is based on two resonant scatterers sewn on stretchable fabrics with conductive threads. The combination of the two scatterers allows for the detection of the strain in a 2-D plane. The backscattered response, as a function of frequency, is detected with the help of frequency-stepped continuous wave radar technique. The radar performs the detection by scanning the two orthogonal polarizations. It operates in the ISM band at 2.45 GHz. The proposed processing method achieves the 2-D extraction of the strain and the tensile force with the electromagnetic response of the sensor. Simulation and measurement results validate this new concept.

[1]  L. Ukkonen,et al.  Design and realization of stretchable sewn chipless RFID tags and sensors for wearable applications , 2013, 2013 IEEE International Conference on RFID (RFID).

[2]  Nemai Chandra Karmakar,et al.  Towards chipless RFID-based sensing for pervasive surface crack detection , 2012, 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA).

[3]  Christian Mandel,et al.  Group-delay modulation with metamaterial-inspired coding particles for passive chipless RFID , 2012, 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA).

[4]  Manos M. Tentzeris,et al.  Wireless sensing and identification of passive electromagnetic sensors based on millimetre-wave FMCW RADAR , 2012, 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA).

[5]  L. Ukkonen,et al.  Fabrication of embroidered UHF RFID tags , 2012, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation.

[6]  Etienne Perret,et al.  A compact chipless RFID tag with environment sensing capability , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[7]  S. Tedjini,et al.  Temporal multi-frequency encoding technique for chipless RFID applications , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[8]  Yahya Rahmat-Samii,et al.  Characterization of embroidered dipole-type RFID tag antennas , 2012, 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA).

[9]  C. Di Natale,et al.  Polymer-doped UHF RFID tag for wireless-sensing of humidity , 2012, 2012 IEEE International Conference on RFID (RFID).

[10]  A. Lazaro,et al.  IR-UWB radar system and tag design for time-coded chipless RFID , 2012, 2012 6th European Conference on Antennas and Propagation (EUCAP).

[11]  Rolf Jakoby,et al.  Passive chipless wireless sensor for two-dimensional displacement measurement , 2011, 2011 41st European Microwave Conference.

[12]  M. Tentzeris,et al.  A wireless passive RCS-based temperature sensor using liquid metal and microfluidics technologies , 2011, 2011 41st European Microwave Conference.

[13]  S. Tedjini,et al.  Chipless RFID Tag Using Hybrid Coding Technique , 2011, IEEE Transactions on Microwave Theory and Techniques.

[14]  Rolf Jakoby,et al.  A wireless passive strain sensor , 2011, 2011 IEEE SENSORS Proceedings.

[15]  G. Marrocco,et al.  Passive RFID Strain-Sensor Based on Meander-Line Antennas , 2011, IEEE Transactions on Antennas and Propagation.

[16]  S. Sarma,et al.  RFID tag antenna based temperature sensing in the frequency domain , 2011, 2011 IEEE International Conference on RFID.

[17]  Yang Wang,et al.  Passive wireless smart-skin sensor using RFID-based folded patch antennas , 2011 .

[18]  Manos M. Tentzeris,et al.  Design and development of a millimetre-wave novel passive ultrasensitive temperature transducer for remote sensing and identification , 2010, The 40th European Microwave Conference.

[19]  Klaus Finkenzeller,et al.  Rfid Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification , 2003 .

[20]  P. Pons,et al.  Pressure measurement from the RADAR interrogation of passive sensors , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[21]  Manos M. Tentzeris,et al.  A novel passive ultrasensitive RF temperature transducer for remote sensing and identification utilizing radar cross sections variability , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[22]  Nemai Karmakar,et al.  UWB chipless tag RFID reader design , 2010, 2010 IEEE International Conference on RFID-Technology and Applications.

[23]  Nemai C. Karmakar,et al.  Multiresonator based chipless RFID tag and dedicated RFID reader , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[24]  Li Yang,et al.  A Novel Conformal RFID-Enabled Module Utilizing Inkjet-Printed Antennas and Carbon Nanotubes for Gas-Detection Applications , 2009, IEEE Antennas and Wireless Propagation Letters.

[25]  K. Varahramyan,et al.  A Chipless RFID Sensor System for Cyber Centric Monitoring Applications , 2009, IEEE Transactions on Microwave Theory and Techniques.

[26]  P. Pons,et al.  Pressure sensing approach based on electromagnetic transduction principle , 2008, 2008 Asia-Pacific Microwave Conference.

[27]  Junho Yeo,et al.  Design of a UHF RFID fiber tag antenna with electric-thread using a sewing machine , 2008, 2008 Asia-Pacific Microwave Conference.

[28]  You Chung Chung,et al.  Wearable UHF RFID tag antenna design using flexible electro-thread and textile , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[29]  Guo Yan,et al.  Sensitive Skin and the Relative Sensing System for Real-time Surface Monitoring of Crack in Civil Infrastructure , 2006 .

[30]  A. Hoorfar,et al.  Space-filling curve RFID tags , 2006, 2006 IEEE Radio and Wireless Symposium.

[31]  I. Robertson,et al.  RF barcodes using multiple frequency bands , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[32]  C. Hartmann,et al.  A global SAW ID tag with large data capacity , 2002, 2002 IEEE Ultrasonics Symposium, 2002. Proceedings..