Elementary quantum gates with Gaussian states

We study the question of converting initially Gaussian states into non-Gaussian ones by two- and three-photon subtraction to improve non-classical properties of the conditional optical fields. We show the photon subtraction may effectively generate non-Gaussian states only in case of small values of the mean values of the position and momentum operators. In particular, the photon-subtracted state can be made arbitrary close to Gaussian state in limiting case of large initial amplitude of displacement. Use of initial displacement in input Gaussian states opens wider prospects to manipulate them. In particular, realization of probabilistic Hadamard gate with input Gaussian states is discussed where photon subtraction is motive force able unevenly to increase measure of non-classicality of the output state. Subtraction of larger number of photons enables to increase fidelity and non-classical measure of the conditional states.

[1]  S. A. Podoshvedov Generation of displaced squeezed superpositions of coherent states , 2012 .

[2]  Photon subtracted states and enhancement of nonlocality in the presence of noise , 2005, quant-ph/0503104.

[3]  O. Hirota,et al.  Entangled coherent states: Teleportation and decoherence , 2001 .

[4]  Petr Marek,et al.  Elementary gates for quantum information with superposed coherent states , 2010, 1006.3644.

[5]  G. Milburn,et al.  Quantum computation with optical coherent states , 2002, QELS 2002.

[6]  Lütkenhaus,et al.  Nonclassical effects in phase space. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[7]  Hyunchul Nha,et al.  Proposed test of quantum nonlocality for continuous variables. , 2004, Physical review letters.

[8]  Lee,et al.  Measure of the nonclassicality of nonclassical states. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[9]  Philippe Grangier,et al.  Generation of optical ‘Schrödinger cats’ from photon number states , 2007, Nature.

[10]  Xiaoguang Wang Quantum teleportation of entangled coherent states , 2001 .

[11]  M. S. Kim,et al.  Purification of entangled coherent states , 2002, Quantum Inf. Comput..

[12]  Gershon Kurizki,et al.  Improvement on teleportation of continuous variables by photon subtraction via conditional measurement , 2000 .

[13]  Philippe Grangier,et al.  Non-gaussian statistics from individual pulses of squeezed light , 2004 .

[14]  K Mølmer,et al.  Generation of a superposition of odd photon number states for quantum information networks. , 2006, Physical review letters.

[15]  S. A. Podoshvedov Single qubit operations with base squeezed coherent states , 2013 .

[16]  S. A. Podoshvedov Schemes for performance of displacing Hadamard gate with coherent states , 2012 .

[17]  B. Yurke,et al.  Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. , 1986, Physical review letters.

[18]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[19]  Matteo G. A. Paris,et al.  Teleportation improvement by inconclusive photon subtraction , 2003 .

[20]  Sergey A. Podoshvedov,et al.  Building of one-way Hadamard gate for squeezed coherent states , 2013 .

[21]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[22]  Julien Laurat,et al.  Generating Optical Schrödinger Kittens for Quantum Information Processing , 2006, Science.

[23]  Proposal for loophole‐free Bell test using homodyne detection , 2004 .

[24]  Gerard J. Milburn,et al.  Teleportation improvement by conditional measurements on the two-mode squeezed vacuum , 2002 .

[25]  M. Ježek,et al.  Experimental demonstration of a Hadamard gate for coherent state qubits , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[26]  M. Kim,et al.  Quantum nonlocality for a mixed entangled coherent state , 2001, quant-ph/0109121.

[27]  P. L. Knight,et al.  Nonclassicality of a photon-subtracted Gaussian field , 2004, quant-ph/0409218.

[28]  Loophole-free test of quantum nonlocality using high-efficiency homodyne detectors , 2004, quant-ph/0407181.

[29]  Masahide Sasaki,et al.  Conditional generation of an arbitrary superposition of coherent states , 2007 .

[30]  Enhancement of nonlocality in phase space , 2004 .

[31]  S. Olivares,et al.  Squeezed Fock state by inconclusive photon subtraction , 2005, quant-ph/0506108.

[32]  M. Kim,et al.  Suitability of the approximate superposition of squeezed coherent states for various quantum protocols , 2008, 0805.2054.

[33]  S. Olivares,et al.  Gaussian states in continuous variable quantum information , 2005, quant-ph/0503237.

[34]  M. S. Kim,et al.  Recent developments in photon-level operations on travelling light fields , 2008, 0807.4708.

[35]  P. Marek,et al.  Generating 'squeezed' superpositions of coherent states using photon addition and subtraction , 2008, 0812.1626.

[36]  M. S. Kim,et al.  Efficient quantum computation using coherent states , 2001, quant-ph/0109077.

[37]  Masahide Sasaki,et al.  Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction. , 2008, Physical review letters.

[38]  Sergey A. Podoshvedov Displaced rotations of coherent states , 2012, Quantum Inf. Process..

[39]  Christopher C. Gerry,et al.  GENERATION OF OPTICAL MACROSCOPIC QUANTUM SUPERPOSITION STATES VIA STATE REDUCTION WITH A MACH-ZEHNDER INTERFEROMETER CONTAINING A KERR MEDIUM , 1999 .

[40]  A. P. Lund,et al.  Conditional production of superpositions of coherent states with inefficient photon detection , 2004 .

[41]  Production of superpositions of coherent states in traveling optical fields with inefficient photon detection , 2004, quant-ph/0410022.

[42]  Masahide Sasaki,et al.  Temporally multiplexed superposition states of continuous variables , 2008 .

[43]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[44]  Kae Nemoto,et al.  Efficient classical simulation of continuous variable quantum information processes. , 2002, Physical review letters.