Proposal for a multiphase fall model based on real-world fall recordings with body-fixed sensors

Falls are by far the leading cause of fractures and accidents in the home environment. The current Cochrane reviews and other systematic reviews report on more than 200 intervention studies about fall prevention. A recent meta-analysis has summarized the most important risk factors of accidental falls. However, falls and fall-related injuries remain a major challenge. One novel approach to recognize, analyze, and work better toward preventing falls could be the differentiation of the fall event into separate phases. This might aid in reconsidering ways to design preventive efforts and diagnostic approaches. From a conceptual point of view, falls can be separated into a pre-fall phase, a falling phase, an impact phase, a resting phase, and a recovery phase. Patient and external observers are often unable to give detailed comments concerning these phases. With new technological developments, it is now at least partly possible to examine the phases of falls separately and to generate new hypotheses.The article describes the practicality and the limitations of this approach using body-fixed sensor technology. The features of the different phases are outlined with selected real-world fall signals.ZusammenfassungStürze sind die mit Abstand häufigsten Ursachen von Frakturen und häuslichen Verletzungen im Alter. In den Cochrane Reviews und anderen systematischen Analysen wurden mehr als 200 randomisierte Interventionsstudien zur Sturzprävention erfasst. Eine neue Metaanalyse liegt für die Risikofaktoren von Stürzen vor. Dennoch bleiben Stürze und sturzbedingte Verletzungen eine große Herausforderung. Ein neuer Ansatz zur Erkennung, Analyse und Prävention von Stürzen ist es, Stürze in Abschnitte aufzuteilen. Dies könnte bei der Erstellung diagnostischer und präventiver Ansätze helfen. Phänomenologisch ist offenkundig, dass es eine Vorphase, Fallphase, Aufprallphase, Ruhephase und mögliche Erholungsphase gibt. Patienten und Fremdbeobachter sind allerdings nicht in der Lage, hierzu exakte Angaben zu machen. Durch technologische Neuentwicklungen ist es nunmehr möglich, diese Abschnitte zumindest teilweise zu beurteilen und daraus erste Hypothesen abzuleiten.Der Artikel beschreibt dabei die Praktikabilität und Beschränkungen der Verwendung von am Körper getragenen Sensoren. Die Sturzphasen werden anhand von Fallbeispielen verdeutlicht.

[1]  W C Hayes,et al.  Etiology and prevention of age-related hip fractures. , 1996, Bone.

[2]  H. Menz,et al.  Falls in Older People: Risk Factors and Strategies for Prevention , 2000 .

[3]  Jochen Klenk,et al.  Femoral fracture rates in people with and without disability. , 2012, Age and ageing.

[4]  C. Becker,et al.  Systematic review of definitions and methods of measuring falls in randomised controlled fall prevention trials. , 2006, Age and ageing.

[5]  A K Bourke,et al.  Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. , 2007, Gait & posture.

[6]  Patrick Boissy,et al.  User-based motion sensing and fuzzy logic for automated fall detection in older adults. , 2007, Telemedicine journal and e-health : the official journal of the American Telemedicine Association.

[7]  A. Campbell,et al.  Falls in older people , 2008, BMJ : British Medical Journal.

[8]  Jeffrey M. Hausdorff,et al.  Comparison of acceleration signals of simulated and real-world backward falls. , 2011, Medical engineering & physics.

[9]  Mark Speechley,et al.  Utilization of the Seniors Falls Investigation Methodology to identify system-wide causes of falls in community-dwelling seniors. , 2009, The Gerontologist.

[10]  S. Cummings,et al.  A hypothesis: the causes of hip fractures. , 1989, Journal of gerontology.

[11]  M N Nyan,et al.  A wearable system for pre-impact fall detection. , 2008, Journal of biomechanics.

[12]  Rein Tideiksaar Falls in Older Persons: Prevention and Management , 1998 .

[13]  Jun Han,et al.  Towards automatic detection of falls using wireless sensors , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[14]  Sarah E Lamb,et al.  Interventions for preventing falls in older people living in the community. , 2012, The Cochrane database of systematic reviews.

[15]  C. Brayne,et al.  Inability to get up after falling, subsequent time on floor, and summoning help: prospective cohort study in people over 90 , 2008, BMJ : British Medical Journal.

[16]  C. Becker,et al.  Smartphone-based solutions for fall detection and prevention: the FARSEEING approach , 2012, Zeitschrift für Gerontologie und Geriatrie.

[17]  S. Robinovitch,et al.  Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study , 2013, The Lancet.

[18]  G. ÓLaighin,et al.  A proposal for the classification and evaluation of fall detectors Une proposition pour la classification et l'évaluation des détecteurs de chutes , 2008 .

[19]  Jeffrey M. Hausdorff,et al.  Evaluation of Accelerometer-Based Fall Detection Algorithms on Real-World Falls , 2012, PloS one.

[20]  Eva Negri,et al.  Risk Factors for Falls in Community-dwelling Older People: A Systematic Review and Meta-analysis , 2010, Epidemiology.

[21]  M. Järvinen,et al.  Majority of Hip Fractures Occur as a Result of a Fall and Impact on the Greater Trochanter of the Femur: A Prospective Controlled Hip Fracture Study with 206 Consecutive Patients , 1999, Calcified Tissue International.

[22]  Hylton B. Menz,et al.  Comprar Falls in Older People. Risk Factors and Strategies for Prevention. | Stephen R. Lord | 9780521680998 | Cambridge University Press , 2008 .

[23]  L Nyberg,et al.  Comparison of real-life accidental falls in older people with experimental falls in middle-aged test subjects. , 2012, Gait & posture.

[24]  C. Becker,et al.  Development of a Common Outcome Data Set for Fall Injury Prevention Trials: The Prevention of Falls Network Europe Consensus , 2005, Journal of the American Geriatrics Society.

[25]  Ngaire Kerse,et al.  Interventions for preventing falls in older people in nursing care facilities and hospitals. , 2010, The Cochrane database of systematic reviews.

[26]  L Quagliarella,et al.  An interactive fall and loss of consciousness detector system. , 2008, Gait & posture.

[27]  Klaus Hauer,et al.  Feasibility and accuracy of fall reports in persons with dementia: a prospective observational study , 2011, International Psychogeriatrics.

[28]  B E Groen,et al.  Martial arts fall techniques decrease the impact forces at the hip during sideways falling. , 2007, Journal of biomechanics.

[29]  C. Becker,et al.  Evaluation of a fall detector based on accelerometers: A pilot study , 2005, Medical and Biological Engineering and Computing.