Orthrozanclus elongata n. sp. and the significance of sclerite-covered taxa for early trochozoan evolution

[1]  Z. Maoyan,et al.  High resolution images of Orthrozanclus elongata , 2017 .

[2]  D. Harper,et al.  Brachiopods: origin and early history , 2017 .

[3]  R. Wood,et al.  A deep root for the Cambrian explosion: Implications of new bio- and chemostratigraphy from the Siberian Platform , 2017 .

[4]  A. Zhuravlev,et al.  First macrobiota biomineralization was environmentally triggered , 2017, Proceedings of the Royal Society B: Biological Sciences.

[5]  J. Vinther,et al.  Ancestral morphology of crown-group molluscs revealed by a new Ordovician stem aculiferan , 2017, Nature.

[6]  Martin R. Smith,et al.  Hyoliths are Palaeozoic lophophorates , 2017, Nature.

[7]  N. Butterfield,et al.  A cryptic record of Burgess Shale‐type diversity from the early Cambrian of Baltica , 2017 .

[8]  Y. Passamaneck,et al.  Clustered brachiopod Hox genes are not expressed collinearly and are associated with lophotrochozoan novelties , 2016, Proceedings of the National Academy of Sciences.

[9]  S. Bengtson,et al.  Terreneuvian stratigraphy and faunas from the Anabar Uplift, Siberia. , 2017 .

[10]  C. Skovsted A silicified tommotiid from the lower Cambrian of Greenland , 2016 .

[11]  C. Skovsted,et al.  New early Cambrian sclerites of Lapworthella schodakensis from NE Greenland: advancements in knowledge of lapworthellid taxonomy, sclerite growth and scleritome organization , 2016, Geological Magazine.

[12]  G. Budd,et al.  Ecological innovations in the Cambrian and the origins of the crown group phyla , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[13]  Martin R. Smith,et al.  New reconstruction of the Wiwaxia scleritome, with data from Chengjiang juveniles , 2015, Scientific Reports.

[14]  H. Philippe,et al.  Phylogenomic Insights into Animal Evolution , 2015, Current Biology.

[15]  G. Brock,et al.  The early Cambrian tommotiid genus Dailyatia from South Australia , 2015 .

[16]  S. Morris,et al.  New records of Burgess Shale-type taxa from the middle Cambrian of Utah , 2015, Journal of Paleontology.

[17]  J. Copley,et al.  How the mollusc got its scales: convergent evolution of the molluscan scleritome , 2015 .

[18]  A. Scheltema The original molluscan radula and progenesis in Aplacophora revisited , 2014 .

[19]  J. Paterson,et al.  New data on Oikozetetes (Mollusca, Halkieriidae) from the lower Cambrian of South Australia , 2014, Journal of Paleontology.

[20]  D. Vachard,et al.  The tommotiid Kelanella and associated fauna from the early Cambrian of southern Montagne Noire (France): implications for camenellan phylogeny , 2014 .

[21]  X-L. Zhang,et al.  An early Cambrian agglutinated tubular lophophorate with brachiopod characters , 2014, Scientific Reports.

[22]  Xi-guang Zhang,et al.  Articulated Wiwaxia from the Cambrian Stage 3 Xiaoshiba Lagerstätte , 2014, Scientific Reports.

[23]  L. Holmer,et al.  Paterimitra pyramidalis from South Australia: scleritome, shell structure and evolution of a lower Cambrian stem group brachiopod , 2014 .

[24]  Martin R. Smith Ontogeny, morphology and taxonomy of the soft‐bodied Cambrian ‘mollusc’ Wiwaxia , 2014 .

[25]  J. Álvaro,et al.  Tommotiids from the early Cambrian (Series 2, Stage 3) of Morocco and the evolution of the tannuolinid scleritome and setigerous shell structures in stem group brachiopods , 2014 .

[26]  L. Holmer,et al.  A sclerite-bearing stem group entoproct from the early Cambrian and its implications , 2013, Scientific Reports.

[27]  Martin R. Smith Mouthparts of the Burgess Shale fossils Odontogriphus and Wiwaxia: implications for the ancestral molluscan radula , 2012, Proceedings of the Royal Society B: Biological Sciences.

[28]  J. Sigwart,et al.  A Silurian armoured aplacophoran and implications for molluscan phylogeny , 2012, Nature.

[29]  R. Langer Origins and Early History , 2011 .

[30]  Jisuo Jin,et al.  Relic aragonite from Ordovician-Silurian brachiopods : Implications for the evolution of calcification , 2011 .

[31]  S. Bengtson,et al.  Chronology of early Cambrian biomineralization , 2011, Geological Magazine.

[32]  L. Holmer,et al.  Scleritome construction, biofacies, biostratigraphy and systematics of the tommotiid Eccentrotheca helenia sp. nov. from the Early Cambrian of South Australia , 2011 .

[33]  L. Holmer,et al.  First record of a bivalved larval shell in Early Cambrian tommotiids and its phylogenetic significance , 2011 .

[34]  S. Porter Calcite and aragonite seas and the de novo acquisition of carbonate skeletons , 2010, Geobiology.

[35]  L. Holmer,et al.  Homologous skeletal secretion in tommotiids and brachiopods , 2009 .

[36]  J. Vinther THE CANAL SYSTEM IN SCLERITES OF LOWER CAMBRIAN SINOSACHITES (HALKIERIIDAE: SACHITIDA): SIGNIFICANCE FOR THE MOLLUSCAN AFFINITIES OF THE SACHITIDS , 2009 .

[37]  J. Paterson,et al.  Oikozetetes from the early Cambrian of South Australia: implications for halkieriid affinities and functional morphology , 2009 .

[38]  N. Butterfield,et al.  Early Cambrian “Soft-Shelled” Brachiopods as Possible Stem-Group Phoronids , 2009 .

[39]  L. Holmer,et al.  The Early Cambrian tommotiid Micrina, a sessile bivalved stem group brachiopod , 2008, Biology Letters.

[40]  R. Wood,et al.  Eve of biomineralization: Controls on skeletal mineralogy , 2008 .

[41]  S. Porter SKELETAL MICROSTRUCTURE INDICATES CHANCELLORIIDS AND HALKIERIIDS ARE CLOSELY RELATED , 2008 .

[42]  U. Balthasar MUMMPIKIA GEN. NOV. AND THE ORIGIN OF CALCITIC‐SHELLED BRACHIOPODS , 2008 .

[43]  J. Vinther,et al.  Machaeridians are Palaeozoic armoured annelids , 2008, Nature.

[44]  U. Balthasar AN EARLY CAMBRIAN ORGANOPHOSPHATIC BRACHIOPOD WITH CALCITIC GRANULES , 2007 .

[45]  J. Sigwart,et al.  Deep molluscan phylogeny: synthesis of palaeontological and neontological data , 2007, Proceedings of the Royal Society B: Biological Sciences.

[46]  Simon Conway Morris,et al.  Halwaxiids and the Early Evolution of the Lophotrochozoans , 2007, Science.

[47]  C. Schander,et al.  Reply to Butterfield on stem‐group “worms”: fossil lophotrochozoans in the Burgess Shale , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[48]  N. Butterfield Hooking some stem‐group “worms”: fossil lophotrochozoans in the Burgess Shale , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[49]  L. Holmer,et al.  A spinose stem group brachiopod with pedicle from the Middle Cambrian Burgess Shale , 2006 .

[50]  C. Schander,et al.  A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale , 2006, Nature.

[51]  J. Bergström,et al.  THE MORPHOLOGY OF HYOLITHIDS AND ITS FUNCTIONAL IMPLICATIONS , 2005 .

[52]  Maoyan Zhu,et al.  Fossilization modes in the Chengjiang Lagerstätte (Cambrian of China): testing the roles of organic preservation and diagenetic alteration in exceptional preservation , 2005 .

[53]  J. Vinther,et al.  The Early Cambrian Halkieria is a mollusc , 2005 .

[54]  Todd A. Ehlers,et al.  REVIEWS IN MINERALOGY AND GEOCHEMISTRY , 2005 .

[55]  D. Eibye-Jacobsen,et al.  A reevaluation of Wiwaxia and the polychaetes of the Burgess Shale , 2004 .

[56]  S. Xiao,et al.  TANNUOLINA AND MICRINA (TANNUOLINIDAE) FROM THE LOWER CAMBRIAN OF EASTERN YUNNAN, SOUTH CHINA, AND THEIR SCLERITOME RECONSTRUCTION , 2004 .

[57]  S. Porter HALKIERIIDS IN MIDDLE CAMBRIAN PHOSPHATIC LIMESTONES FROM AUSTRALIA , 2004, Journal of Paleontology.

[58]  A. Knoll Biomineralization and Evolutionary History , 2003 .

[59]  N. Butterfield Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils , 2002, Paleobiology.

[60]  Alwyn Williams,et al.  A Stem Group Brachiopod From The Lower Cambrian: Support For A Micrina (Halkieriid) Ancestry , 2002 .

[61]  K. Peterson,et al.  Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences , 2001, Evolution & development.

[62]  M. Cusack,et al.  The nature of siliceous mosaics forming the first shell of the brachiopod Discinisca. , 2001, Journal of structural biology.

[63]  S. Jensen,et al.  A critical reappraisal of the fossil record of the bilaterian phyla , 2000, Biological reviews of the Cambridge Philosophical Society.

[64]  C. Russell Description of a new species of Arichlidon (Chrysopetalidae: Polychaeta) from the West Atlantic and comparison with the East Atlantic species Arichlidon reyssi , 2000 .

[65]  S. Morris,et al.  Lower Cambrian halkieriids and other coeloscleritophorans from Aksu-Wushi, Xinjiang, China , 1997, Journal of Paleontology.

[66]  C. Russell Patterns of growth and setal development in the deep-sea worm, Strepternos didymopyton (Polychaeta: Chrysopetalidae) , 1997 .

[67]  S. Morris,et al.  Articulated Halkieriids from the Lower Cambrian of North Greenland and their Role in Early Protostome Evolution , 1995 .

[68]  S. Bengtson The cap‐shaped Cambrian fossil Maikhanella and the relationship between coeloscleritophorans and molluscs , 1992 .

[69]  S. Morris,et al.  Articulated halkieriids from the Lower Cambrian of north Greenland , 1990, Nature.

[70]  N. Butterfield A reassessment of the enigmatic Burgess Shale fossil Wiwaxia corrugata (Matthew) and its relationship to the polychaete Canadia spinosa Walcott , 1990, Paleobiology.

[71]  S. Morris The Middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale, British Columbia, Canada , 1985 .

[72]  S. Morris,et al.  A comparative study of Lower Cambrian Halkieria and Middle Cambrian Wiwaxia , 1984 .