PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA

New transiting planet candidates are identified in 16 months (2009 May-2010 September) of data from the Kepler spacecraft. Nearly 5000 periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1108 viable new planet candidates, bringing the total count up to over 2300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis that identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R_P/R_★), reduced semimajor axis (d/R_★), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (201% for candidates smaller than 2 R_⊕ compared to 53% for candidates larger than 2 R_⊕) and those at longer orbital periods (124% for candidates outside of 50 day orbits versus 86% for candidates inside of 50 day orbits). The gains are larger than expected from increasing the observing window from 13 months (Quarters 1-5) to 16 months (Quarters 1-6) even in regions of parameter space where one would have expected the previous catalogs to be complete. Analyses of planet frequencies based on previous catalogs will be affected by such incompleteness. The fraction of all planet candidate host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the habitable zone are forthcoming if, indeed, such planets are abundant.

Las Cumbres Observatory Global Telescope Network | Astrophysics | Berkeley | Astronomy | M. R. Haas | Jennifer R. Hall | San Diego State University | Georgia State University | The University of Texas | Martin C. Stumpe | D. O. Astronomy | K. Kinemuchi | D. Physics | T. O. S. University | Center for Exoplanets | Habitable Worlds | U. California | U. Florida | H. F. Astrophysics | Department of Astrophysical Sciences | Princeton University. | National Optical Astronomy Observatory | F. Fressin | E. Ford | F. Mullally | L. Walkowicz | Avi Shporer | M. Holman | A. Gould | J. Fortney | J. Lissauer | A. Dupree | R. Gilliland | T. Brown | D. Ciardi | R. Morris | M. Everett | U. Hertfordshire | P. Tenenbaum | L. Buchhave | D. Latham | D. Sasselov | S. Thompson | D. Charbonneau | G. Marcy | H. Isaacson | A. Howard | J. Rowe | J. Jenkins | S. Bryson | S. Howell | T. Gautier | N. Batalha | H. Kjeldsen | S. Quinn | W. Borucki | D. Koch | D. Caldwell | J. Cleve | C. Burke | W. Cochran | G. Torres | G. Basri | J. Christiansen | D. Fabrycky | J. Tarter | P. Lucas | A. Boss | E. Devore | A. Prša | T. Barclay | E. Quintana | J. Twicken | J. Geary | F. Girouard | T. Klaus | Jie Li | S. Seader | Jeffrey C. Smith | G. Esquerdo | B. Clarke | D. Ragozzine | Nasa Ames Research Center | S. Institute | A. University | Nasa Exoplanet Science InstituteCaltech | M. I. O. Technology | F. C. F. P. Astrophysics | L. H. O. Science | W. Rapin | J. Christensen-Dalsgaard | B. Demory | K. Ibrahim | D. Sanderfer | J. Still | K. Uddin | W. U. D. O. Physics | Seti InstituteNASA Ames Research Center | Bay Area Environmental Research InstituteNASA Ames Res Center | J. V. R. I. O. Technology | Carnegie Institution of Washington | Niels Bohr Institute | U. Copenhagen | Centre for Star | Planet Formation | Natural History Museum of Denmark | M. Observatory | T. U. O. Texas | D. O. Earth | Atmospheric | P. Sciences | Orbital Sciences CorporationNASA Ames Research Center | Centre for Gravitational Astrophysics | Villanova University | N. R. Center | Department of Earth | D. Physics | M. Haas | H. C. F. Astrophysics | J. Hall | B. A. E. R. I. A. R. Center | Princeton University | O. Center | D. Sciences | Aarhus University

[1]  Robert Zannetti,et al.  Landolt-bornstein, new series , 1974 .

[2]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[3]  J. Valenti,et al.  Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra , 1996 .

[4]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[5]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[6]  G. Kov'acs,et al.  A box-fitting algorithm in the search for periodic transits , 2002, astro-ph/0206099.

[7]  Jon M. Jenkins,et al.  The Impact of Solar-like Variability on the Detectability of Transiting Terrestrial Planets , 2002 .

[8]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[9]  Jong-Hak Woo,et al.  Y2 Isochrones with an Improved Core Overshoot Treatment , 2004 .

[10]  B. Scott Gaudi,et al.  Fraction of Stars With Planets in the Open Cluster NGC 1245 , 2004 .

[11]  J. Valenti,et al.  Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs , 2005 .

[12]  M. Shara,et al.  A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15 Seconds of Arc (lspm Catalog -north) , 2004 .

[13]  X. Delfosse,et al.  Habitable planets around the star Gliese 581 , 2007, 0710.5294.

[14]  C. Lintott,et al.  Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.

[15]  Magali Deleuil,et al.  Non-radial oscillation modes with long lifetimes in giant stars , 2009, Nature.

[16]  F. Fressin,et al.  CHARACTERISTICS OF KEPLER PLANETARY CANDIDATES BASED ON THE FIRST DATA SET , 2010, 1006.2799.

[17]  M. Martic,et al.  THE ASTEROSEISMIC POTENTIAL OF KEPLER: FIRST RESULTS FOR SOLAR-TYPE STARS , 2010, 1001.0506.

[18]  Jie Li,et al.  Transiting planet search in the Kepler pipeline , 2010, Astronomical Telescopes + Instrumentation.

[19]  Howard Isaacson,et al.  DISCOVERY AND ROSSITER–McLAUGHLIN EFFECT OF EXOPLANET KEPLER-8b , 2010, 1001.0416.

[20]  F. Fressin,et al.  FIVE KEPLER TARGET STARS THAT SHOW MULTIPLE TRANSITING EXOPLANET CANDIDATES , 2010, 1006.2763.

[21]  Peter Tenenbaum,et al.  Photometric analysis in the Kepler Science Operations Center pipeline , 2010, Astronomical Telescopes + Instrumentation.

[22]  Hema Chandrasekaran,et al.  Pixel-level calibration in the Kepler Science Operations Center pipeline , 2010, Astronomical Telescopes + Instrumentation.

[23]  A. Prsa,et al.  PRE-SPECTROSCOPIC FALSE-POSITIVE ELIMINATION OF KEPLER PLANET CANDIDATES , 2010, 1001.0392.

[24]  Sara Seager,et al.  KEPLER ECLIPSING BINARY STARS. I. CATALOG AND PRINCIPAL CHARACTERIZATION OF 1879 ECLIPSING BINARIES IN THE FIRST DATA RELEASE , 2010, 1006.2815.

[25]  Hema Chandrasekaran,et al.  Presearch data conditioning in the Kepler Science Operations Center pipeline , 2010, Astronomical Telescopes + Instrumentation.

[26]  G. Handler,et al.  Kepler Asteroseismology Program: Introduction and First Results , 2009, 1001.0139.

[27]  Howard Isaacson,et al.  Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations , 2010, Science.

[28]  D. A. Caldwell,et al.  SELECTION, PRIORITIZATION, AND CHARACTERISTICS OF KEPLER TARGET STARS , 2010, 1001.0349.

[29]  J. Forbrich,et al.  SIMULTANEOUS X-RAY AND RADIO OBSERVATIONS OF YOUNG STELLAR OBJECTS IN NGC 1333 AND IC 348 , 2011, 1105.0923.

[30]  Austin,et al.  KEPLER'S FIRST ROCKY PLANET: KEPLER-10b , 2011, 1102.0605.

[31]  Warren R. Brown,et al.  Kepler-16: A Transiting Circumbinary Planet , 2011, Science.

[32]  William F. Welsh,et al.  KEPLER ECLIPSING BINARY STARS. II. 2165 ECLIPSING BINARIES IN THE SECOND DATA RELEASE , 2011, 1103.1659.

[33]  D. Sasselov,et al.  EXPLORING THE HABITABLE ZONE FOR KEPLER PLANETARY CANDIDATES , 2011, 1105.0861.

[34]  H A McAlister,et al.  HD 181068: A Red Giant in a Triply Eclipsing Compact Hierarchical Triple System , 2011, Science.

[35]  E. Ford,et al.  A FIRST COMPARISON OF KEPLER PLANET CANDIDATES IN SINGLE AND MULTIPLE SYSTEMS , 2011, 1103.3896.

[36]  James P. Lloyd,et al.  CHARACTERIZING THE COOL KEPLER OBJECTS OF INTERESTS. NEW EFFECTIVE TEMPERATURES, METALLICITIES, MASSES, AND RADII OF LOW-MASS KEPLER PLANET-CANDIDATE HOST STARS , 2011, 1109.1819.

[37]  Timothy M. Brown,et al.  KEPLER INPUT CATALOG: PHOTOMETRIC CALIBRATION AND STELLAR CLASSIFICATION , 2011, 1102.0342.

[38]  A. Youdin THE EXOPLANET CENSUS: A GENERAL METHOD APPLIED TO KEPLER , 2011, 1105.1782.

[39]  M. R. Haas,et al.  A closely packed system of low-mass, low-density planets transiting Kepler-11 , 2011, Nature.

[40]  F. Fressin,et al.  CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA , 2011, 1102.0541.

[41]  Jon M. Jenkins,et al.  ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS , 2011, 1102.0543.

[42]  C. Lintott,et al.  Planet Hunters: the first two planet candidates identified by the public using the Kepler public archive data , 2011, 1109.4621.

[43]  E. Gaidos,et al.  THEY MIGHT BE GIANTS: LUMINOSITY CLASS, PLANET OCCURRENCE, AND PLANET–METALLICITY RELATION OF THE COOLEST KEPLER TARGET STARS , 2012, 1202.5394.

[44]  E. Ford,et al.  Kepler constraints on planets near hot Jupiters , 2012, Proceedings of the National Academy of Sciences.

[45]  Peter Tenenbaum,et al.  DETECTION OF POTENTIAL TRANSIT SIGNALS IN THE FIRST THREE QUARTERS OF Kepler MISSION DATA , 2012, 1201.1048.

[46]  K. Covey,et al.  CHARACTERIZING THE COOL KOIs. III. KOI 961: A SMALL STAR WITH LARGE PROPER MOTION AND THREE SMALL PLANETS , 2012, 1201.2189.

[47]  Travis S. Metcalfe,et al.  A REVISED EFFECTIVE TEMPERATURE SCALE FOR THE KEPLER INPUT CATALOG , 2011, 1110.4456.

[48]  K. Kinemuchi,et al.  TRANSIT TIMING OBSERVATIONS FROM KEPLER. V. TRANSIT TIMING VARIATION CANDIDATES IN THE FIRST SIXTEEN MONTHS FROM POLYNOMIAL MODELS , 2012, 1201.1892.

[49]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[50]  J. B. Laird,et al.  An abundance of small exoplanets around stars with a wide range of metallicities , 2012, Nature.

[51]  Il,et al.  TRANSIT TIMING OBSERVATIONS FROM KEPLER. VI. POTENTIALLY INTERESTING CANDIDATE SYSTEMS FROM FOURIER-BASED STATISTICAL TESTS , 2012, 1201.1873.

[52]  Jie Li,et al.  Kepler-22b: A 2.4 EARTH-RADIUS PLANET IN THE HABITABLE ZONE OF A SUN-LIKE STAR , 2011, The Astrophysical Journal.

[53]  Sara Seager,et al.  Two Earth-sized planets orbiting Kepler-20 , 2011, Nature.

[54]  K. Kinemuchi,et al.  ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS , 2012, 1201.5424.