Functional Limit Theorems for Dependent Variables

The first result is a generalization of the classical results for independent random variables. The second result gives general conditions for convergence to processes which can be obtained from Brownian motion by a random change of time. This result is used to give a unified development of most of the martingale central limit theorems in the literature. An important aspect of our methods is that after the initial result is shown, we can avoid any further consideration of tightness.

[1]  I. Helland Continuity of a class of random time transformations , 1978 .

[2]  P. Hall Martingale Invariance Principles , 1977 .

[3]  D. Wolfson Limit theorems for sums of a sequence of random variables defined on a Markov chain , 1977, Journal of Applied Probability.

[4]  H. Rootzén A note on convergence to mixtures of normal distributions , 1977 .

[5]  H. Rootzén On the functional central limit theorem for martingales, II , 1977 .

[6]  H. Rootzén Rényi-Mixing and Functional Limit Theorems for Martingales , 1977 .

[7]  I. Weissman On Weak Convergence of Extremal Processes , 1976 .

[8]  H. Rootzén Fluctuations of Sequences which Converge in Distribution , 1976 .

[9]  S. Resnick Weak Convergence to Extremal Processes , 1975 .

[10]  G. O'Brien,et al.  Limit Theorems for Extreme Values of Chain-Dependent Processes , 1975 .

[11]  G. Eagleson Martingale Convergence to Mixtures of Infinitely Divisible Laws , 1975 .

[12]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[13]  D. Freedman On Tail Probabilities for Martingales , 1975 .

[14]  G. O'Brien Limit theorems for sums of chain-dependent processes , 1974, Journal of Applied Probability.

[15]  D. McLeish Dependent Central Limit Theorems and Invariance Principles , 1974 .

[16]  D. Freedman THE POISSON APPROXIMATION FOR DEPENDENT EVENTS , 1974 .

[17]  G. O'Brien The Limiting Distribution of Maxima of Random Variables Defined on a Denumerable Markov Chain , 1974 .

[18]  D. Scott,et al.  Central limit theorems for martingales and for processes with stationary increments using a Skorokhod representation approach , 1973, Advances in Applied Probability.

[19]  S. Resnick,et al.  The structure of extremal processes , 1973, Advances in Applied Probability.

[20]  T. Lindvall,et al.  Weak convergence of probability measures and random functions in the function space D[0,∞) , 1973, Journal of Applied Probability.

[21]  R. Drogin An Invariance Principle for Martingales , 1972 .

[22]  A. Dvoretzky,et al.  Asymptotic normality for sums of dependent random variables , 1972 .

[23]  B. M. Brown,et al.  Martingale convergence to infinitely divisible laws with finite variances , 1971 .

[24]  B. M. Brown,et al.  Martingale Central Limit Theorems , 1971 .

[25]  D. Freedman Brownian motion and diffusion , 1971 .

[26]  Marcel F. Neuts,et al.  Limit laws for maxima of a sequence of random variables defined on a Markov chain , 1970, Advances in Applied Probability.

[27]  A. Rényi Remarks on the Poisson process , 1967 .

[28]  J. Lamperti Limiting distributions for branching processes , 1967 .

[29]  J. Keilson,et al.  A central limit theorem for processes defined on a finite Markov chain , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.

[30]  J. Doob Stochastic processes , 1953 .

[31]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .