VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model

We propose a highly efficient spatiotemporal vertical-cavity surface-emitting laser (VCSEL) model aimed at optimizing entire optical links. It is based on two-dimensional (2-D) rate equations, which allow the computation of dynamic gain competition resulting from inhomogeneous field and carrier spatial distributions in the cavity. The equations are mathematically transformed so as to remove any explicit spatial dependency from their formulation. This modified model reduces the computational time by several orders of magnitude. Resulting 2-D dynamic intensity profiles allow investigating effects related to improper fiber coupling due to transverse misalignment between laser beam and fiber. Self-consistent implementations of feedback and chirping, thermal effects, and noise are presented as well. A variety of advanced simulations showing results consistent with theory and experiments confirm the validity of the model.

[1]  Rainer Michalzik,et al.  Quasi-3D modeling of vertical-cavity surface-emitting laser operation , 1995, Photonics West.

[2]  Effect of optical feedback on the noise properties of vertical cavity surface emitting lasers , 1997 .

[3]  L. Register,et al.  Numerical simulation of vertical cavity surface emitting lasers. , 1998, Optics express.

[4]  S. Kang,et al.  A simple rate-equation-based thermal VCSEL model , 1999 .

[5]  S. Balle,et al.  Transverse mode dynamics in vertical-cavity surface-emitting lasers: Spatiotemporal versus modal expansion descriptions , 2002 .

[6]  Fabien Mieyeville,et al.  A behavioural opto-electro-thermal VCSEL model for simulation of optical links , 2001 .

[7]  R.S. Tucker,et al.  Microwave Circuit Models of Semiconductor Injection Lasers , 1982, 1982 IEEE MTT-S International Microwave Symposium Digest.

[8]  H. Summers,et al.  Experimental investigation of thermally induced power saturation in vertical-cavity surface-emitting lasers , 2001 .

[9]  Sung-Mo Kang,et al.  A comprehensive circuit-level model of vertical-cavity surface-emitting lasers , 1999 .

[10]  Austin V. Harton,et al.  Spatially independent VCSEL models for the simulation of diffusive turn-off transients , 1999 .

[11]  Klaus Petermann,et al.  Noise analysis of injection-locked semiconductor injection lasers , 1986 .

[12]  K. Shore,et al.  Transverse-mode selection and noise properties of external-cavity vertical-cavity surface-emitting lasers including multiple-reflection effects , 1999 .

[13]  Angel Valle,et al.  Selection and modulation of high-order transverse modes in vertical-cavity surface-emitting lasers , 1998 .

[14]  Andreas Leven,et al.  Intensity modulation and chirp of 1.55-/spl mu/m multiple-quantum-well laser diodes: modeling and experimental verification , 1999 .

[15]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[16]  H. Wenzel,et al.  Modeling thermal effects on the light vs. current characteristic of gain-guided vertical-cavity surface-emitting lasers , 1994, IEEE Photonics Technology Letters.

[17]  Larry A. Coldren,et al.  Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance , 1993 .

[18]  P. Shum,et al.  Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers , 1996 .

[19]  Dietrich Marcuse,et al.  Computer simulation of laser photon fluctuations: Theory of single-cavity laser , 1984 .

[20]  Jao-Hwa Kuang,et al.  Reduction of fiber alignment shifts in semiconductor laser module packaging , 2000, Journal of Lightwave Technology.

[21]  G. Agrawal,et al.  Mode-partition noise in vertical-cavity surface-emitting lasers , 1997, IEEE Photonics Technology Letters.

[22]  B. R. Clarke The effect of reflections on the system performance of intensity modulated laser diodes , 1991 .

[23]  W. Baechtold,et al.  2-D VCSEL model for investigation of dynamic fiber coupling and spatially filtered noise , 2003, IEEE Photonics Technology Letters.

[24]  Klaus Petermann,et al.  External optical feedback phenomena in semiconductor lasers , 1995, Other Conferences.

[25]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[26]  N. Delen,et al.  Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach , 1998 .

[27]  K. Iga,et al.  Surface-emitting laser-its birth and generation of new optoelectronics field , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  D. Erni,et al.  Quasi‐analytic steady‐state solution of VCSEL rate equations including spatial hole burning and carrier diffusion losses , 2003 .

[29]  High frequency intensity noise spectra of axial mode groups in the radiation from CW GaAIAs diode lasers , 1977 .

[30]  Meir Orenstein,et al.  Mode-coupling effects on the small-signal modulation of multitransverse-mode vertical-cavity semiconductor lasers , 1999 .

[31]  J. Goodman Introduction to Fourier optics , 1969 .

[32]  C. Masoller,et al.  Turn‐on transient dynamics of a semiconductor laser with optical feedback , 2001 .

[33]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[34]  K. A. Shore,et al.  Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes , 1995 .

[35]  Rainer Michalzik,et al.  High-performance oxide-confined GaAs VCSELs , 1997 .

[36]  Klaus Petermann,et al.  Noise performance of multimode VCSELs , 2001 .

[37]  Arthur J. Lowery,et al.  Time-domain simulation of photonic devices, circuits, and systems , 1996, Photonics West.

[38]  Joanne Y. Law,et al.  Feedback-induced chaos and intensity-noise enhancement in vertical-cavity surface-emitting lasers , 1998 .

[39]  F. Chatenoud,et al.  Modeling of quantum-well lasers with electro-opto-thermal interaction , 1995 .

[40]  K. A. Shore,et al.  Statistics of transverse mode turn-on dynamics in VCSELs , 1997 .

[41]  Niloy K. Dutta,et al.  Analysis of current spreading, carrier diffusion, and transverse mode guiding in surface emitting lasers , 1990 .

[42]  W. Fichtner,et al.  Computing simulation optical modes for VCSEL device , 2002 .

[43]  David A. B. Miller,et al.  Limit to the Bit-Rate Capacity of Electrical Interconnects from the Aspect Ratio of the System Architecture , 1997, J. Parallel Distributed Comput..

[44]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[45]  K. A. Shore,et al.  Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes , 1996 .

[46]  D. J. Pope,et al.  Microwave Circuit Models of Semiconductor Injection Lasers , 1982 .

[47]  Niloy K. Dutta,et al.  Long wavelength semiconductor lasers , 1988, Technical Digest., International Electron Devices Meeting.

[48]  Jose A. P. Morgado,et al.  Assessment of laser intensity noise spectrum from rigorous numerical simulation of singlemode laser rate equations , 1998, Other Conferences.

[49]  L. Pesquera,et al.  Turn-off transients in current-modulated multitransverse-mode vertical-cavity surface-emitting lasers , 2001 .

[50]  D. A. Fraser,et al.  The physics of semiconductor devices , 1986 .

[51]  R. E. Wagner,et al.  Coupling efficiency of optics in single-mode fiber components. , 1982, Applied optics.