Higher order local accuracy by averaging in the finite element method

This chapter describes the class of finite element subspaces and explains the main result on the accuracy of K h * u h ,where K h is a fixed function, u h represents local averages, and * denotes convolution. The function K h has the following properties: (1) K h has small support; (2) K h is independent of the specific choice of S h or the operator L; (3) K h * u h is easily computable from u h ; and (4) K h * u h approximates u to higher order than does u h . The chapter also discusses on notation, subspaces and the construction of K h .

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  I. J. Schoenberg Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae , 1946 .

[3]  Avner Friedman,et al.  Partial differential equations , 1969 .

[4]  J. Bramble,et al.  Triangular elements in the finite element method , 1970 .

[5]  J. H. Bramble,et al.  Bounds for a class of linear functionals with applications to Hermite interpolation , 1971 .

[6]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[7]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[8]  V. Thomée Spline Approximation and Difference Schemes for the Heat Equation. , 1972 .

[9]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[10]  Mary F. Wheeler,et al.  Some superconvergence results for an H1 - Galerkin procedure for the heat equation , 1973, Computing Methods in Applied Sciences and Engineering.

[11]  C. D. Boor,et al.  Collocation at Gaussian Points , 1973 .

[12]  J. Bramble,et al.  Rate of convergence estimates for nonselfadjoint eigenvalue approximations , 1973 .

[13]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[14]  A. H. Schatz,et al.  Interior estimates for Ritz-Galerkin methods , 1974 .

[15]  Vidar Thomée,et al.  Convergence Estimates for Galerkin Methods for Variable Coefficient Initial Value Problems , 1974 .

[16]  James H. Bramble,et al.  Maximum-norm interior estimates for Ritz-Galerkin methods , 1975 .

[17]  J. Bramble A survey of some finite element methods proposed for treating the dirichlet problem , 1975 .

[18]  James H. Bramble,et al.  Estimates for spline projections , 1976 .