Higher order local accuracy by averaging in the finite element method
暂无分享,去创建一个
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] I. J. Schoenberg. Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae , 1946 .
[3] Avner Friedman,et al. Partial differential equations , 1969 .
[4] J. Bramble,et al. Triangular elements in the finite element method , 1970 .
[5] J. H. Bramble,et al. Bounds for a class of linear functionals with applications to Hermite interpolation , 1971 .
[6] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[7] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[8] V. Thomée. Spline Approximation and Difference Schemes for the Heat Equation. , 1972 .
[9] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[10] Mary F. Wheeler,et al. Some superconvergence results for an H1 - Galerkin procedure for the heat equation , 1973, Computing Methods in Applied Sciences and Engineering.
[11] C. D. Boor,et al. Collocation at Gaussian Points , 1973 .
[12] J. Bramble,et al. Rate of convergence estimates for nonselfadjoint eigenvalue approximations , 1973 .
[13] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[14] A. H. Schatz,et al. Interior estimates for Ritz-Galerkin methods , 1974 .
[15] Vidar Thomée,et al. Convergence Estimates for Galerkin Methods for Variable Coefficient Initial Value Problems , 1974 .
[16] James H. Bramble,et al. Maximum-norm interior estimates for Ritz-Galerkin methods , 1975 .
[17] J. Bramble. A survey of some finite element methods proposed for treating the dirichlet problem , 1975 .
[18] James H. Bramble,et al. Estimates for spline projections , 1976 .