Minimizing makespan in three-machine flow shops with deteriorating jobs

In this paper, a three-machine permutation flow shop scheduling problem with time-dependent processing times is considered. By the time-dependent processing times we mean that the job's processing time is an increasing function of its starting time. The objective is to find a sequence that minimizes the makespan. This problem is well known to be NP-hard. Several dominance properties and a lower bound are derived to speed up the elimination process of a branch-and-bound algorithm. Moreover, two heuristic algorithms are proposed to overcome the inefficiency of the branch-and-bound algorithm. Computational experiments on randomly generated problems are conducted to evaluate the branch-and-bound algorithm and heuristic algorithm. Computational results show that the proposed heuristic algorithm M-NEH perform effectively and efficiently.