On the Performance of Pose-Based RGB-D Visual Navigation Systems

This paper presents a thorough performance analysis of several variants of the feature-based visual navigation system that uses RGB-D data to estimate in real-time the trajectory of a freely moving sensor. The evaluation focuses on the advantages and problems that are associated with choosing a particular structure of the sensor-tracking front-end, employing particular feature detectors/descriptors, and optimizing the resulting trajectory treated as a graph of sensor poses. Moreover, a novel yet simple graph pruning algorithm is introduced, which enables to remove spurious edges from the pose-graph. The experimental evaluation is performed on two publicly available RGB-D data sets to ensure that our results are scientifically verifiable.

[1]  Vincent Lepetit,et al.  BRIEF: Computing a Local Binary Descriptor Very Fast , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[3]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  John J. Leonard,et al.  Robust real-time visual odometry for dense RGB-D mapping , 2013, 2013 IEEE International Conference on Robotics and Automation.

[5]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Jan-Michael Frahm,et al.  USAC: A Universal Framework for Random Sample Consensus , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[8]  David Nister,et al.  Bundle Adjustment Rules , 2006 .

[9]  Wolfram Burgard,et al.  An evaluation of the RGB-D SLAM system , 2012, 2012 IEEE International Conference on Robotics and Automation.

[10]  Michal R. Nowicki,et al.  Combining photometric and depth data for lightweight and robust visual odometry , 2013, 2013 European Conference on Mobile Robots.

[11]  Piotr Skrzypczynski,et al.  Simultaneous localization and mapping: A feature-based probabilistic approach , 2009, Int. J. Appl. Math. Comput. Sci..

[12]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[13]  Albert S. Huang,et al.  Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments , 2012, Int. J. Robotics Res..

[14]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[16]  Moonhong Baeg,et al.  Spatial Uncertainty Model for Visual Features Using a Kinect™ Sensor , 2012, Sensors.

[17]  Wolfram Burgard,et al.  Experimental analysis of dynamic covariance scaling for robust map optimization under bad initial estimates , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[18]  Wolfram Burgard,et al.  3-D Mapping With an RGB-D Camera , 2014, IEEE Transactions on Robotics.

[19]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[20]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[21]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Adam Schmidt,et al.  Comparative Assessment of Point Feature Detectors and Descriptors in the Context of Robot Navigation , 2013 .

[23]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[24]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[25]  Hauke Strasdat,et al.  Local accuracy and global consistency for efficient SLAM , 2012 .

[26]  Dima Damen,et al.  Detecting Carried Objects in Short Video Sequences , 2008, ECCV.

[27]  J.-Y. Bouguet,et al.  Pyramidal implementation of the lucas kanade feature tracker , 1999 .

[28]  F. Fraundorfer,et al.  Visual Odometry : Part II: Matching, Robustness, Optimization, and Applications , 2012, IEEE Robotics & Automation Magazine.

[29]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[30]  Daniel Cremers,et al.  Robust odometry estimation for RGB-D cameras , 2013, 2013 IEEE International Conference on Robotics and Automation.

[31]  Daniel A. Keim,et al.  On Knowledge Discovery and Data Mining , 1997 .

[32]  Sunglok Choi,et al.  Performance Evaluation of RANSAC Family , 2009, BMVC.

[33]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[34]  Michel Dhome,et al.  Generic and real-time structure from motion using local bundle adjustment , 2009, Image Vis. Comput..

[35]  Andrew J. Davison,et al.  A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[36]  Dieter Fox,et al.  RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments , 2012, Int. J. Robotics Res..