ASYMPTOTIC STABILITY OF NON-PLANAR RIEMANN SOLUTIONS FOR MULTI-D SYSTEMS OF CONSERVATION LAWS WITH SYMMETRIC NONLINEARITIES

We study the asymptotic behavior of entropy solutions of the Cauchy problem for multi-dimensional systems of conservation laws of the form , where the gα are real smooth functions defined in [0,+∞), and when the initial data are perturbations of two-state nonplanar Riemann data. Specifically, if R0(x) is such Riemann data and ψ∈L∞(ℝd)n satisfies ψ(Tx)→0 in , as T→∞, then an entropy solution, u(x,t), of the Cauchy problem with u(x,0)=R0(x)+ψ(x) satisfies u(ξt,t)→R(ξ) in , as t→∞, where R(x/t) turns out to be the unique self-similar entropy solution of the corresponding Riemann problem.

[1]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[2]  P. Lax,et al.  Systems of conservation equations with a convex extension. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Kurt Friedrichs,et al.  [71-1] Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. USA, 68 (1971), 1686–1688 , 1986 .

[4]  Gui-Qiang G. Chen,et al.  Large-Time Behavior of Entropy Solutions of Conservation Laws☆ , 1999 .

[5]  Hermano Frid,et al.  Divergence‐Measure Fields and Hyperbolic Conservation Laws , 1999 .

[6]  C. Dafermos Entropy and the stability of classical solutions of hyperbolic systems of conservation laws , 1996 .

[7]  P. Lax,et al.  Systems of conservation laws , 1960 .

[8]  Tai-Ping Liu,et al.  On a nonstrictly hyperbolic system of conservation laws , 1985 .

[9]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[10]  D. Serre Richness and the Classification of Quasilinear Hyperbolic Systems , 1991 .

[11]  Hermano Frid,et al.  Decay of Entropy Solutions of Nonlinear Conservation Laws , 1999 .

[12]  Max Bonnefille,et al.  Propagation des oscillations dans deux classes de systemes hyperboliques (2∗2et3∗3) , 1988 .

[13]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[14]  H. Fédérer Geometric Measure Theory , 1969 .

[15]  D. Serre,et al.  Solutions à variations bornées pour certains systèmes hyperboliques de lois de conservation , 1987 .

[16]  H. Frid On the Asymptotic Behavior of Solutions of Certain Multi-D Viscous Systems of Conservation Laws , 1999 .

[17]  R. J. DiPerna Convergence of approximate solutions to conservation laws , 1983 .

[18]  Gui-Qiang G. Chen Hyperbolic systems of conservation laws with a symmetry , 1991 .

[19]  Barbara Lee Keyfitz,et al.  A system of non-strictly hyperbolic conservation laws arising in elasticity theory , 1980 .

[20]  H. Freistühler Instability of vanishing viscosity approximation to hyperbolic systems of conservation laws with rotational invariance , 1990 .

[21]  I. N. Sneddon,et al.  Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves , 1999 .