Spectral properties of Hankel matrices and numerical solutions of finite moment problems
暂无分享,去创建一个
[1] O. Taussky. Contributions to the Solution of Systems of Linear Equations and the Determination of Eigenvalues , 1954 .
[2] Walter Gautschi,et al. The condition of orthogonal polynomials , 1972 .
[3] J. M. Taylor,et al. The condition of gram matrices and related problems , 1978, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[4] F. R. Gantmakher. The Theory of Matrices , 1984 .
[5] J. Mason,et al. Algorithms for approximation , 1987 .
[6] G. Talenti. Recovering a function from a finite number of moments , 1987 .
[7] S. Seatzu,et al. An algorithm for computing minimum norm solutions of finite moment problem. , 1988 .
[8] Michael Vogelius,et al. A backprojection algorithm for electrical impedance imaging , 1990 .
[9] G. Inglese. A relation between the Hilbert and Vandermonde matrices , 1990 .
[10] D. Fasino,et al. On the spectral condition of rectangular vandermonde matrices , 1992 .
[11] James G. Nagy,et al. Preconditioned iterative regularization for Ill-posed problems , 1992 .
[12] Per Christian Hansen,et al. Regularization methods for large-scale problems , 1993 .
[13] E. E. Tyrtyshnikov. How bad are Hankel matrices? , 1994 .
[14] J. Nagy,et al. Circulant Preconditioned Toeplitz Least Squares Iterations , 1994, SIAM J. Matrix Anal. Appl..