Proportional-integral-plus control applications of state-dependent parameter models

Abstract This paper considers proportional-integral-plus (PIP) control of non-linear systems defined by state-dependent parameter models, with particular emphasis on three practical demonstrators: a microclimate test chamber, a 1/5th-scale laboratory representation of an intelligent excavator, and a full-scale (commercial) vibrolance system used for ground improvement on a construction site. In each case, the system is represented using a quasi-linear state-dependent parameter (SDP) model structure, in which the parameters are functionally dependent on other variables in the system. The approach yields novel SDP-PIP control algorithms with improved performance and robustness in comparison with conventional linear PIP control. In particular, the new approach better handles the large disturbances and other non-linearities typical in the application areas considered.

[1]  A. Heber,et al.  Air Patterns and Turbulence in an Experimental Livestock Building , 1996 .

[2]  Peter C. Young,et al.  Direct digital and adaptive control by input-output state variable feedback pole assignment , 1987 .

[3]  C. James Taylor,et al.  Nonlinear control system design for construction robots using state dependent parameter models. , 2006 .

[4]  Peter C. Young,et al.  Proportional-integral-plus (PIP) control of time delay systems , 1998 .

[5]  P. F. Davis,et al.  Improvement of greenhouse heating control , 1991 .

[6]  H. E. Merritt,et al.  Hydraulic Control Systems , 1991 .

[7]  C. James Taylor,et al.  Environmental Test Chamber for the Support of Learning and Teaching in Intelligent Control , 2004 .

[8]  A J Harrison,et al.  The yielding of tensioned fine wires in the Ilizarov frame , 1998, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[9]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[10]  K. J. Burnham,et al.  A bilinear controller with PID structure , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[11]  Derek W. Seward,et al.  The Development, Control and Operation of an Autonomous Robotic Excavator , 1998, J. Intell. Robotic Syst..

[12]  Daniel Berckmans,et al.  Cost effective combined axial fan and throttling valve control of ventilation rate , 2004 .

[13]  Eugeniusz Budny,et al.  Load-independent control of a hydraulic excavator , 2003 .

[14]  P. Young,et al.  State space control system design based on non-minimal state-variable feedback: Further generalization and unification results , 2000 .

[15]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[16]  Peter C. Young,et al.  Modelling and PIP control of a glasshouse micro-climate , 1994 .

[17]  M. A. Stables,et al.  Non-linear Control of Ventilation Rate using State-dependent Parameter Models , 2006 .

[18]  Hugh Durrant-Whyte,et al.  Impedance control of a hydraulically actuated robotic excavator , 2000 .

[19]  Jun Gu,et al.  Proportional‐Integral‐Plus Control of an Intelligent Excavator , 2004 .

[20]  Diego J. Pedregal,et al.  Environmental time series analysis and forecasting with the Captain toolbox , 2007, Environ. Model. Softw..