Self-Replicating Tiles and Their Boundary
暂无分享,去创建一个
[1] Michael F. Barnsley,et al. Fractals everywhere , 1988 .
[2] Andreas Schief,et al. Separation properties for self-similar sets , 1994 .
[3] Robert S. Strichartz,et al. Wavelets and self-affine tilings , 1993 .
[4] J. Lagarias,et al. Integral self-affine tiles in ℝn I. Standard and nonstandard digit sets , 1996 .
[5] Jeffrey C. Lagarias,et al. Tiling the line with translates of one tile , 1996 .
[6] G. C. Shephard,et al. Tilings and Patterns , 1990 .
[7] Andrew Haas,et al. Self-Similar Lattice Tilings , 1994 .
[8] Tim Bedford,et al. Generating special Markov partitions for hyperbolic toral automorphisms using fractals , 1986, Ergodic Theory and Dynamical Systems.
[9] Christoph Bandt,et al. Self-similar sets. V. Integer matrices and fractal tilings of ⁿ , 1991 .
[10] F. Michel Dekking,et al. Replicating Superfigures and Endomorphisms of Free Groups , 1982, J. Comb. Theory, Ser. A.
[11] J. Keesling,et al. The Hausdorff Dimension of the Boundary of a Self‐Similar Tile , 2000 .
[12] Jeffrey C. Lagarias,et al. Self-affine tiles in ℝn , 1996 .
[13] Andrew Vince,et al. Replicating Tessellations , 1993, SIAM J. Discret. Math..
[14] Yang Wang. INTEGRAL SELF-AFFINE TILES IN Rn II. LATTICE TILINGS , 1998 .
[15] A. Vince. Rep-tiling Euclidean space , 1995 .
[16] William J. Gilbert,et al. Fractal geometry derived from complex bases , 1982 .
[17] Karlheinz Gröchenig,et al. Multiresolution analysis, Haar bases, and self-similar tilings of Rn , 1992, IEEE Trans. Inf. Theory.