Self-Replicating Tiles and Their Boundary

Abstract. All self-replicating lattice tilings of the plane can be constructed using special iterated function systems (IFS). Certain self-replicating curves can be constructed using the recurrent set method (RS). A bijection between the IFS parameters and the RS parameters is such that the curve K produced by the RS parameters is the boundary of the tile T produced by the IFS parameters. The correspondence is algorithmic in that K can be drawn from the IFS data using turtle graphics and T can be drawn from the RS data using an IFS iteration.

[1]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[2]  Andreas Schief,et al.  Separation properties for self-similar sets , 1994 .

[3]  Robert S. Strichartz,et al.  Wavelets and self-affine tilings , 1993 .

[4]  J. Lagarias,et al.  Integral self-affine tiles in ℝn I. Standard and nonstandard digit sets , 1996 .

[5]  Jeffrey C. Lagarias,et al.  Tiling the line with translates of one tile , 1996 .

[6]  G. C. Shephard,et al.  Tilings and Patterns , 1990 .

[7]  Andrew Haas,et al.  Self-Similar Lattice Tilings , 1994 .

[8]  Tim Bedford,et al.  Generating special Markov partitions for hyperbolic toral automorphisms using fractals , 1986, Ergodic Theory and Dynamical Systems.

[9]  Christoph Bandt,et al.  Self-similar sets. V. Integer matrices and fractal tilings of ⁿ , 1991 .

[10]  F. Michel Dekking,et al.  Replicating Superfigures and Endomorphisms of Free Groups , 1982, J. Comb. Theory, Ser. A.

[11]  J. Keesling,et al.  The Hausdorff Dimension of the Boundary of a Self‐Similar Tile , 2000 .

[12]  Jeffrey C. Lagarias,et al.  Self-affine tiles in ℝn , 1996 .

[13]  Andrew Vince,et al.  Replicating Tessellations , 1993, SIAM J. Discret. Math..

[14]  Yang Wang INTEGRAL SELF-AFFINE TILES IN Rn II. LATTICE TILINGS , 1998 .

[15]  A. Vince Rep-tiling Euclidean space , 1995 .

[16]  William J. Gilbert,et al.  Fractal geometry derived from complex bases , 1982 .

[17]  Karlheinz Gröchenig,et al.  Multiresolution analysis, Haar bases, and self-similar tilings of Rn , 1992, IEEE Trans. Inf. Theory.