Development of a compact MRI system for trabecular bone microstructure measurements of the distal radius

A compact MRI system for trabecular bone (TB) microstructure measurements of the distal radius was developed using a 1.0 T permanent magnet and a compact MRI console. TB microstructure of the distal radius was clearly visualized using a three‐dimensional (3D) driven equilibrium spin‐echo (DESE) sequence in 23 min. The image obtained had a sufficient spatial resolution (150 μm × 150 μm × 500 μm) and signal‐to‐noise ratio (SNR) (approximately 10) for 3D bone microstructure analysis. The system demonstrated the feasibility of using a permanent magnet compact MRI system as a clinical instrument for bone microstructure measurements of the distal radius. Magn Reson Med 58:225–229, 2007. © 2007 Wiley‐Liss, Inc.

[1]  C. D. Castilho,et al.  Field ion energy deficit calculations for liquid metal ion sources , 1986 .

[2]  Tomoyuki Haishi,et al.  Development of a compact MRI system for trabecular bone volume fraction measurements , 2004, Magnetic resonance in medicine.

[3]  M. Kleerekoper,et al.  The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures , 1985, Calcified Tissue International.

[4]  S. Majumdar,et al.  Correlation of Trabecular Bone Structure with Age, Bone Mineral Density, and Osteoporotic Status: In Vivo Studies in the Distal Radius Using High Resolution Magnetic Resonance Imaging , 1997, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[5]  F. Wehrli,et al.  Implications of pulse sequence in structural imaging of trabecular bone , 2005, Journal of magnetic resonance imaging : JMRI.

[6]  M. Sagawa,et al.  New material for permanent magnets on a base of Nd and Fe (invited) , 1984 .

[7]  R. Recker,et al.  Architecture and vertebral fracture , 1993, Calcified Tissue International.

[8]  Sharmila Majumdar,et al.  Magnetic Resonance Imaging of Trabecular Bone Structure , 2002, Topics in magnetic resonance imaging : TMRI.

[9]  A. Wright,et al.  Role of Magnetic Resonance for Assessing Structure and Function of Trabecular Bone , 2002, Topics in magnetic resonance imaging : TMRI.

[10]  R. Turner A Target Field Approach To Optimal Coil Design , 1986 .

[11]  F. Wehrli,et al.  Fast Low‐Angle Dual Spin‐Echo (FLADE): A new robust pulse sequence for structural imaging of trabecular bone , 2006, Magnetic resonance in medicine.

[12]  M. Bouxsein,et al.  In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. , 2005, The Journal of clinical endocrinology and metabolism.

[13]  T Haishi,et al.  Development of a 1.0 T MR microscope using a Nd-Fe-B permanent magnet. , 2001, Magnetic resonance imaging.

[14]  S. Majumdar,et al.  High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment. , 2002, Clinical biomechanics.

[15]  Scott N. Hwang,et al.  Digital Topological Analysis of In Vivo Magnetic Resonance Microimages of Trabecular Bone Reveals Structural Implications of Osteoporosis , 2001, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[16]  D G Nishimura,et al.  MR imaging of articular cartilage using driven equilibrium , 1999, Magnetic resonance in medicine.

[17]  F W Wehrli,et al.  Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. , 2004, Bone.

[18]  Branimir Vasilic,et al.  Effect of Testosterone Replacement on Trabecular Architecture in Hypogonadal Men , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[19]  M. Aoki,et al.  A development of a permanent magnet assembly for MRI devices using Nd-Fe-B material , 1989, International Magnetics Conference.

[20]  H. Song,et al.  Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing. , 1998, Radiology.

[21]  S. Majumdar,et al.  In Vivo High Resolution MRI of the Calcaneus: Differences in Trabecular Structure in Osteoporosis Patients , 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[22]  H. Song,et al.  Fast 3D large‐angle spin‐echo imaging (3D FLASE) , 1996, Magnetic resonance in medicine.

[23]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[24]  Felix W Wehrli,et al.  Subvoxel processing: A method for reducing partial volume blurring with application to in vivo MR images of trabecular bone , 2002, Magnetic resonance in medicine.

[25]  A New Pulse Sequence for "Fast Recovery" Fast-Scan NMR Imaging , 1984, IEEE Transactions on Medical Imaging.

[26]  Felix W. Wehrli,et al.  Estimating voxel volume fractions of trabecular bone on the basis of magnetic resonance images acquired in vivo , 1999, Int. J. Imaging Syst. Technol..

[27]  Katsumi Kose,et al.  Development of a compact MRI system for measuring the trabecular bone microstructure of the finger , 2007, Magnetic resonance in medicine.