The pathway integral operator involving extension of k-Bessel-Maitland function

[1]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[2]  Certain unified integrals associated with Bessel functions , 2013 .

[3]  C. W. Clenshaw,et al.  The special functions and their approximations , 1972 .

[4]  Fractional integrals and solution of fractional kinetic equations involving k-Mittag-Leffler function , 2017 .

[5]  E. M. Wright,et al.  The asymptotic expansion of integral functions defined by Taylor series , 1940, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[6]  Beta-function formulae and integrals involvingE-functions , 1961 .

[7]  E. M. Wright,et al.  The Asymptotic Expansion of the Generalized Hypergeometric Function , 1935 .

[8]  Jyotindra C. Prajapati,et al.  On a generalization of Mittag-Leffler function and its properties , 2007 .

[9]  Fractional calculus of generalized k-Mittag-Leffler function and its applications to statistical distribution , 2016 .

[10]  Mumtaz Ahmad Khan,et al.  On some properties of the generalized Mittag-Leffler function , 2013, SpringerPlus.

[11]  Arak M. Mathai,et al.  A pathway to matrix-variate gamma and normal densities , 2005 .

[12]  M. Khan,et al.  On Some Properties of a Generalization of Bessel-Maitland Function , 2014 .

[13]  Asghar Qadir,et al.  Extension of Euler's beta function , 1997 .

[14]  A. M. Mathai,et al.  On generalized distributions and pathways , 2008 .

[15]  T. R. Prabhakar A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .

[16]  E. Wright The Asymptotic Expansion of the Generalized Hypergeometric Function , 1935 .

[17]  Guotao Wang,et al.  Pathway fractional integral operators involving $$\mathtt {k}$$k-Struve function , 2016, Afrika Matematika.

[18]  A. Wiman Über den Fundamentalsatz in der Teorie der FunktionenEa(x) , 1905 .