The pathway integral operator involving extension of k-Bessel-Maitland function
暂无分享,去创建一个
[1] G. A. Watson. A treatise on the theory of Bessel functions , 1944 .
[2] Certain unified integrals associated with Bessel functions , 2013 .
[3] C. W. Clenshaw,et al. The special functions and their approximations , 1972 .
[4] Fractional integrals and solution of fractional kinetic equations involving k-Mittag-Leffler function , 2017 .
[5] E. M. Wright,et al. The asymptotic expansion of integral functions defined by Taylor series , 1940, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[6] Beta-function formulae and integrals involvingE-functions , 1961 .
[7] E. M. Wright,et al. The Asymptotic Expansion of the Generalized Hypergeometric Function , 1935 .
[8] Jyotindra C. Prajapati,et al. On a generalization of Mittag-Leffler function and its properties , 2007 .
[9] Fractional calculus of generalized k-Mittag-Leffler function and its applications to statistical distribution , 2016 .
[10] Mumtaz Ahmad Khan,et al. On some properties of the generalized Mittag-Leffler function , 2013, SpringerPlus.
[11] Arak M. Mathai,et al. A pathway to matrix-variate gamma and normal densities , 2005 .
[12] M. Khan,et al. On Some Properties of a Generalization of Bessel-Maitland Function , 2014 .
[13] Asghar Qadir,et al. Extension of Euler's beta function , 1997 .
[14] A. M. Mathai,et al. On generalized distributions and pathways , 2008 .
[15] T. R. Prabhakar. A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .
[16] E. Wright. The Asymptotic Expansion of the Generalized Hypergeometric Function , 1935 .
[17] Guotao Wang,et al. Pathway fractional integral operators involving $$\mathtt {k}$$k-Struve function , 2016, Afrika Matematika.
[18] A. Wiman. Über den Fundamentalsatz in der Teorie der FunktionenEa(x) , 1905 .