Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots

We present optical investigations of hybrid plasmonic nanosystems consisting of lithographically defined plasmonic Au-waveguides or beamsplitters on GaAs substrates coupled to proximal self-assembled InGaAs quantum dots. We designed a sample structure that enabled us to precisely tune the distance between quantum dots and the sample surface during nano-fabrication and demonstrated that non-radiative processes do not play a major role for separations down to ∼10 nm. A polarized laser beam focused on one end of the plasmonic nanostructure generates propagating surface plasmon polaritons that, in turn, create electron-hole pairs in the GaAs substrate during propagation. These free carriers are subsequently captured by the quantum dots ∼25 nm below the surface, giving rise to luminescence. The intensity of the spectrally integrated quantum dot luminescence is used to image the propagating plasmon modes. As the waveguide width reduces from 5 μm to 1 μm, we clearly observe different plasmonic modes at the remot...

[1]  Y. Lacroute,et al.  Optical near-field distributions of surface plasmon waveguide modes , 2003 .

[2]  M. Kaniber,et al.  Coupling of guided surface plasmon polaritons to proximal self-assembled InGaAs Quantum Dots , 2012, Other Conferences.

[3]  Sang‐Hyun Oh,et al.  Single‐Crystalline Silver Films for Plasmonics , 2012, Advanced materials.

[4]  A S Sørensen,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[5]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[6]  James S. Fakonas,et al.  Two-plasmon quantum interference , 2014, Nature Photonics.

[7]  Eyal Feigenbaum,et al.  Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides. , 2010, Nano letters.

[8]  Mark L. Brongersma,et al.  Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides , 2006 .

[9]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[10]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[11]  W.W. Mumford,et al.  Directional Couplers , 1947, Proceedings of the IRE.

[12]  H. Lezec,et al.  Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy , 2008 .

[13]  A. Zrenner A close look on single quantum dots , 2000 .

[14]  Peter Lodahl,et al.  Strongly modified plasmon-matter interaction with mesoscopic quantum emitters , 2010, 1011.5669.

[15]  Kuo-Ping Chen,et al.  Drude relaxation rate in grained gold nanoantennas. , 2010, Nano letters.

[16]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[17]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[18]  K. Vernon,et al.  Simulations of the spontaneous emission of a quantum dot near a gap plasmon waveguide , 2014 .

[19]  Bernhard Lamprecht,et al.  Fluorescence imaging of surface plasmon fields , 2002 .

[20]  Thomas F. Krauss,et al.  Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots , 2001 .

[21]  Reinier W Heeres,et al.  On-chip single plasmon detection. , 2010, Nano letters.

[22]  M. S. Tame,et al.  Quantum Plasmonics , 2013 .

[23]  A. Shields Semiconductor quantum light sources , 2007, 0704.0403.

[24]  Shailesh Kumar,et al.  Controlled coupling of a single nitrogen-vacancy center to a silver nanowire. , 2010, Physical review letters.

[25]  J. Finley,et al.  Optical study of lithographically defined, subwavelength plasmonic wires and their coupling to embedded quantum emitters , 2013, Nanotechnology.

[26]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[27]  J. Mørk,et al.  Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides , 2009, 0909.3233.

[28]  A. Badolato,et al.  Optical properties of single InAs quantum dots in close proximity to surfaces , 2004 .

[29]  Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs , 2011, 1110.4292.

[30]  Urs Sennhauser,et al.  Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. , 2010, Nature communications.

[31]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[32]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .