Detection and measurement of clinically meaningful visual field progression in clinical trials for glaucoma

ABSTRACT Glaucomatous visual field progression has both personal and societal costs and therefore has a serious impact on quality of life. At the present time, intraocular pressure (IOP) is considered to be the most important modifiable risk factor for glaucoma onset and progression. Reduction of IOP has been repeatedly demonstrated to be an effective intervention across the spectrum of glaucoma, regardless of subtype or disease stage. In the setting of approval of IOP‐lowering therapies, it is expected that effects on IOP will translate into benefits in long‐term patient‐reported outcomes. Nonetheless, the effect of these medications on IOP and their associated risks can be consistently and objectively measured. This helps to explain why regulatory approval of new therapies in glaucoma has historically used IOP as the outcome variable. Although all approved treatments for glaucoma involve IOP reduction, patients frequently continue to progress despite treatment. It would therefore be beneficial to develop treatments that preserve visual function through mechanisms other than lowering IOP. The United States Food and Drug Administration (FDA) has stated that they will accept a clinically meaningful definition of visual field progression using Glaucoma Change Probability criteria. Nonetheless, these criteria do not take into account the time (and hence, the speed) needed to reach significant change. In this paper we provide an analysis based on the existing literature to support the hypothesis that decreasing the rate of visual field progression by 30% in a trial lasting 12–18 months is clinically meaningful. We demonstrate that a 30% decrease in rate of visual field progression can be reliably projected to have a significant effect on health‐related quality of life, as defined by validated instruments designed to measure that endpoint. HIGHLIGHTSA 30% decrease in rate of visual field progression can be projected to have a significant effect on health‐related quality of life.The US FDA definition of clinically‐meaningful progression corresponds to a slope ≤−0.5 dB/yr in ≥5 abnormal test locations.A 30% decrease in visual field progression with trend analysis is equivalent to a 2–3 mmHg decrease in intraocular pressure.

[1]  Donald C. Hood,et al.  Glaucomatous damage of the macula , 2013, Progress in Retinal and Eye Research.

[2]  Stuart K. Gardiner,et al.  The Effect of Limiting the Range of Perimetric Sensitivities on Pointwise Assessment of Visual Field Progression in Glaucoma , 2016, Investigative ophthalmology & visual science.

[3]  M. C. Leske,et al.  Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. , 2002, Archives of ophthalmology.

[4]  R. Ritch,et al.  Risk factors for visual field progression in the low-pressure glaucoma treatment study. , 2012, American journal of ophthalmology.

[5]  B C Chauhan,et al.  Test-retest variability of frequency-doubling perimetry and conventional perimetry in glaucoma patients and normal subjects. , 1999, Investigative ophthalmology & visual science.

[6]  Parham Azarbod,et al.  Validation of point-wise exponential regression to measure the decay rates of glaucomatous visual fields. , 2012, Investigative ophthalmology & visual science.

[7]  D. Hodge,et al.  Blindness and glaucoma: a comparison of patients progressing to blindness from glaucoma with patients maintaining vision. , 2002, American journal of ophthalmology.

[8]  F W Fitzke,et al.  Early detection of visual field progression in glaucoma: a comparison of progressor and statpac 2 , 1997, The British journal of ophthalmology.

[9]  A. Sommer,et al.  Estimating progression of visual field loss in glaucoma. , 1997, Ophthalmology.

[10]  J. Myers,et al.  Risk of Falls and Motor Vehicle Collisions in Glaucoma , 2008 .

[11]  R. Ritch,et al.  Rates of Visual Field Change in Eyes with Optic Disc Hemorrhage in the Ocular Hypertension Treatment Study , 2011 .

[12]  C. Johnson,et al.  Simulation of longitudinal threshold visual field data. , 2000, Investigative ophthalmology & visual science.

[13]  Michael Wall,et al.  Repeatability of automated perimetry: a comparison between standard automated perimetry with stimulus size III and V, matrix, and motion perimetry. , 2009, Investigative ophthalmology & visual science.

[14]  Parrish Rk nd Visual impairment, visual functioning, and quality of life assessments in patients with glaucoma. , 1996 .

[15]  Douglas Hoffman,et al.  Comparison of methods to predict visual field progression in glaucoma. , 2005, Archives of ophthalmology.

[16]  S. Gardiner,et al.  Frequency of testing for detecting visual field progression , 2002, The British journal of ophthalmology.

[17]  Anders Heijl,et al.  Prediction of glaucomatous visual field loss by extrapolation of linear trends. , 2008, Archives of ophthalmology.

[18]  Valter Torri,et al.  European Glaucoma Prevention Study: Author reply , 2005 .

[19]  Harlan M. Krumholz,et al.  Clinical trial evidence supporting FDA approval of novel therapeutic agents, 2005-2012. , 2014, JAMA.

[20]  J Katz,et al.  A population-based evaluation of glaucoma screening: the Baltimore Eye Survey. , 1991, American journal of epidemiology.

[21]  Douglas R. Anderson,et al.  The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Collaborative Normal-Tension Glaucoma Study Group. , 1998, American journal of ophthalmology.

[22]  E. Higginbotham Ocular Hypertension Treatment Study. , 2009, Archives of ophthalmology.

[23]  I. Boutron,et al.  Outcomes in Registered, Ongoing Randomized Controlled Trials of Patient Education , 2012, PloS one.

[24]  A Heijl,et al.  Practical recommendations for measuring rates of visual field change in glaucoma , 2008, British Journal of Ophthalmology.

[25]  Chris A Johnson,et al.  Identification of progressive glaucomatous visual field loss. , 2002, Survey of ophthalmology.

[26]  Richard A. Russell,et al.  Detecting Changes in Retinal Function: Analysis with Non-Stationary Weibull Error Regression and Spatial Enhancement (ANSWERS) , 2014, PloS one.

[27]  R. Ritch,et al.  Risk factors for visual field progression in treated glaucoma. , 2010, Archives of ophthalmology.

[28]  J. Wild,et al.  Statistical aspects of the normal visual field in short-wavelength automated perimetry. , 1998, Investigative ophthalmology & visual science.

[29]  C. Johnson,et al.  Normal aging effects for frequency doubling technology perimetry. , 1999, Optometry and vision science : official publication of the American Academy of Optometry.

[30]  I. Goldberg,et al.  Ocular surface disease and quality of life in patients with glaucoma. , 2012, American journal of ophthalmology.

[31]  Chris A. Johnson,et al.  Spatial and temporal processing of threshold data for detection of progressive glaucomatous visual field loss. , 2002, Archives of ophthalmology.

[32]  C. O'brien,et al.  Quality of Life in Glaucoma and Its Relationship with Visual Function , 2003, Journal of glaucoma.

[33]  R. Ritch,et al.  Initial parafoveal versus peripheral scotomas in glaucoma: risk factors and visual field characteristics. , 2011, Ophthalmology.

[34]  J. Piltz,et al.  Test-retest variability in glaucomatous visual fields. , 1990, American journal of ophthalmology.

[35]  David J. Crandall,et al.  Progression of visual field loss in untreated glaucoma patients and glaucoma suspects in St. Lucia, West Indies. , 2002, American journal of ophthalmology-glaucoma.

[36]  Chris A. Johnson,et al.  Influence of glaucomatous visual field loss on health-related quality of life. , 1997, Archives of ophthalmology.

[37]  F. Fitzke,et al.  How often do patients need visual field tests? , 1997, Graefe's Archive for Clinical and Experimental Ophthalmology.

[38]  A M McKendrick,et al.  Variability components of standard automated perimetry and frequency-doubling technology perimetry. , 2001, Investigative ophthalmology & visual science.

[39]  Stephen W. Sorensen,et al.  The cost-effectiveness of routine office-based identification and subsequent medical treatment of primary open-angle glaucoma in the United States. , 2009, Ophthalmology.

[40]  S. Drance,et al.  The rate of progression of scotomas in glaucoma. , 1986, American journal of ophthalmology.

[41]  S M Drance,et al.  The mode of progression of visual field defects in glaucoma. , 1984, American journal of ophthalmology.

[42]  Donald C. Hood,et al.  A framework for comparing structural and functional measures of glaucomatous damage , 2007, Progress in Retinal and Eye Research.

[43]  I. Goldberg,et al.  Depression and Quality of Life in Patients With Glaucoma: A Cross-sectional Analysis Using the Geriatric Depression Scale-15, Assessment of Function Related to Vision, and the Glaucoma Quality of Life-15 , 2008, Journal of glaucoma.

[44]  Brenda W Gillespie,et al.  Visual field progression in the Collaborative Initial Glaucoma Treatment Study the impact of treatment and other baseline factors. , 2009, Ophthalmology.

[45]  L. Ferrucci,et al.  Fear of falling and visual field loss from glaucoma. , 2012, Ophthalmology.

[46]  Chris A. Johnson,et al.  The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. , 2002, Archives of ophthalmology.

[47]  D. Hood,et al.  Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region. , 2014, Investigative ophthalmology & visual science.

[48]  H. Quigley,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006, British Journal of Ophthalmology.

[49]  S M Drance,et al.  The use of visual field indices in detecting changes in the visual field in glaucoma. , 1990, Investigative ophthalmology & visual science.

[50]  S. Drance,et al.  Risk factors for progression of visual field abnormalities in normal-tension glaucoma. , 2001, American journal of ophthalmology.

[51]  U. Schiefer,et al.  Spatial characteristics of visual field progression determined by Monte Carlo simulation: diagnostic innovations in glaucoma study. , 2007, Investigative ophthalmology & visual science.

[52]  R. Ritch,et al.  Visual field progression differences between normal-tension and exfoliative high-tension glaucoma. , 2010, Investigative ophthalmology & visual science.

[53]  H. Quigley,et al.  Clinical trials for glaucoma neuroprotection are not impossible , 2012, Current opinion in ophthalmology.

[54]  Jesse Richman,et al.  Importance of visual acuity and contrast sensitivity in patients with glaucoma. , 2010, Archives of ophthalmology.

[55]  G. Lindgren,et al.  Normal variability of static perimetric threshold values across the central visual field. , 1987, Archives of ophthalmology.

[56]  Susana Molina-Castañer,et al.  Terminology and guidelines for glaucoma , 2009 .

[57]  Douglas R. Anderson,et al.  Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Collaborative Normal-Tension Glaucoma Study Group. , 1998, American journal of ophthalmology.

[58]  R. P. Mills,et al.  Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. , 2001, Ophthalmology.

[59]  M. Nicolela,et al.  Canadian Glaucoma Study: 3. Impact of risk factors and intraocular pressure reduction on the rates of visual field change. , 2010, Archives of ophthalmology.

[60]  R. Ritch,et al.  Glaucoma surgery decreases the rates of localized and global visual field progression. , 2010, American journal of ophthalmology.

[61]  Esteban Morales,et al.  Course of Glaucomatous Visual Field Loss Across the Entire Perimetric Range. , 2016, JAMA ophthalmology.

[62]  E. E. Hartmann,et al.  The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. , 2002, Archives of ophthalmology.

[63]  Valter Torri,et al.  Results of the European Glaucoma Prevention Study. , 2005, Ophthalmology.

[64]  M. C. Leske,et al.  Measuring visual field progression in the Early Manifest Glaucoma Trial. , 2003, Acta ophthalmologica Scandinavica.

[65]  J. Katz,et al.  Analysis of progressive change in automated visual fields in glaucoma. , 1996, Investigative ophthalmology & visual science.

[66]  K. Woodward,et al.  The effective dynamic ranges of standard automated perimetry sizes III and V and motion and matrix perimetry. , 2010, Archives of ophthalmology.

[67]  R A Hitchings,et al.  Regression analysis of visual field progression in low tension glaucoma , 1993 .

[68]  S. Resnikoff,et al.  Global data on visual impairment in the year 2002. , 2004, Bulletin of the World Health Organization.

[69]  Douglas R. Anderson,et al.  Management of ocular hypertension: a cost-effectiveness approach from the Ocular Hypertension Treatment Study. , 2006, American journal of ophthalmology.

[70]  Robert N Weinreb,et al.  The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. , 2012, Investigative ophthalmology & visual science.

[71]  Kouros Nouri-Mahdavi,et al.  Models of glaucomatous visual field loss. , 2014, Investigative ophthalmology & visual science.

[72]  C. Johnson,et al.  Age-related changes in the central visual field for short-wavelength-sensitive pathways. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[73]  J. Caprioli,et al.  Prediction of visual field progression in glaucoma. , 2004, Investigative ophthalmology & visual science.

[74]  Roberta McKean-Cowdin,et al.  Severity of visual field loss and health-related quality of life. , 2007, American journal of ophthalmology.

[75]  Robert N Weinreb,et al.  Patterns of glaucomatous visual field progression identified by three progression criteria. , 2004, American journal of ophthalmology.

[76]  Robert Ritch,et al.  A validated risk calculator to assess risk and rate of visual field progression in treated glaucoma patients. , 2012, Investigative ophthalmology & visual science.

[77]  W. C. Stewart,et al.  Cost-effectiveness of treating ocular hypertension. , 2008, Ophthalmology.

[78]  A. Hofman,et al.  Changing views on open-angle glaucoma: definitions and prevalences--The Rotterdam Study. , 2000, Investigative ophthalmology & visual science.

[79]  R. A. Hitchings,et al.  Modelling series of visual fields to detect progression in normal-tension glaucoma , 1995, Graefe's Archive for Clinical and Experimental Ophthalmology.

[80]  S. Lehmkuhle,et al.  A Sensory Explanation for Visual Attention Deficits in the Elderly , 1994, Optometry and vision science : official publication of the American Academy of Optometry.

[81]  B. Bengtsson,et al.  Lifetime risk of blindness in open-angle glaucoma. , 2013, American journal of ophthalmology.

[82]  H. Quigley Number of people with glaucoma worldwide. , 1996, The British journal of ophthalmology.

[83]  W. Swanson,et al.  Assessment of the reliability of standard automated perimetry in regions of glaucomatous damage. , 2014, Ophthalmology.

[84]  Effect of Treatment on Rates of Visual Field Change in the Ocular Hypertension Treatment Study , 2010 .

[85]  Richard A. Russell,et al.  Examining visual field loss in patients in glaucoma clinics during their predicted remaining lifetime. , 2014, Investigative ophthalmology & visual science.

[86]  H. Jampel,et al.  Depression and mood indicators in newly diagnosed glaucoma patients. , 2007, American journal of ophthalmology-glaucoma.

[87]  J. D. Tompkins,et al.  Characteristics of frequency-of-seeing curves in normal subjects, patients with suspected glaucoma, and patients with glaucoma. , 1993, Investigative ophthalmology & visual science.

[88]  A. Heijl The times they are a‐changin’: time to change glaucoma management , 2013, Acta ophthalmologica.

[89]  J. C. Flanagan Measurement of quality of life: current state of the art. , 1982, Archives of physical medicine and rehabilitation.

[90]  Pradeep Y Ramulu,et al.  Driving patterns in older adults with glaucoma , 2013, BMC Ophthalmology.

[91]  Richard A. Russell,et al.  Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial , 2015, The Lancet.

[92]  Douglas R. Anderson,et al.  Clinical Decisions In Glaucoma , 1993 .

[93]  M. C. Leske,et al.  Predictors of long-term progression in the early manifest glaucoma trial. , 2007, Ophthalmology.

[94]  N M Jansonius,et al.  On the accuracy of measuring rates of visual field change in glaucoma , 2010, British Journal of Ophthalmology.

[95]  C. Krakau,et al.  REGRESSION ANALYSIS OF THE CENTRAL VISUAL FIELD IN CHRONIC GLAUCOMA CASES , 1982, Acta ophthalmologica.

[96]  N. Jansonius,et al.  Incorporating life expectancy in glaucoma care , 2011, Eye.

[97]  Y. Aoyama,et al.  Identifying Areas of the Visual Field Important for Quality of Life in Patients with Glaucoma , 2013, PloS one.

[98]  M. C. Leske,et al.  Prevalence of open-angle glaucoma among adults in the United States. , 2004, Archives of ophthalmology.

[99]  Haruki Abe,et al.  Assessment of the Vision-specific Quality of Life Using Clustered Visual Field in Glaucoma Patients , 2014, Journal of glaucoma.

[100]  I. Rentschler,et al.  Peripheral vision and pattern recognition: a review. , 2011, Journal of vision.

[101]  M. C. Leske,et al.  Natural history of open-angle glaucoma. , 2009, Ophthalmology.

[102]  B. Yawn,et al.  The probability of blindness from open-angle glaucoma. , 1998, Ophthalmology.

[103]  R. Leblanc,et al.  Repeatable diffuse visual field loss in open-angle glaucoma. , 1997, Ophthalmology.

[104]  Robert N Weinreb,et al.  Risk assessment in the management of patients with ocular hypertension. , 2004, American journal of ophthalmology.

[105]  H. Rao,et al.  Relationship between severity of visual field loss at presentation and rate of visual field progression in glaucoma. , 2011, Ophthalmology.

[106]  B. Chauhan,et al.  Signal/noise analysis to compare tests for measuring visual field loss and its progression. , 2009, Investigative ophthalmology & visual science.

[107]  A. Sommer,et al.  Intraobserver and interobserver agreement in measurement of optic disc characteristics. , 1988, Ophthalmology.

[108]  Anders Heijl,et al.  Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. , 2003, Archives of ophthalmology.

[109]  Frank M. Andrews,et al.  Social Indi-cators of Well-Being: American''s Perceptions of Life Quality , 1978 .

[110]  J. Wild,et al.  The SITA perimetric threshold algorithms in glaucoma. , 1999, Investigative ophthalmology & visual science.

[111]  Ilana Traynis,et al.  Prevalence and nature of early glaucomatous defects in the central 10° of the visual field. , 2014, JAMA ophthalmology.

[112]  A. Investigators The Advanced Glaucoma Intervention Study (AGIS): 12. Baseline risk factors for sustained loss of visual field and visual acuity in patients with advanced glaucoma. , 2002, American journal of ophthalmology.

[113]  G. Rebolleda,et al.  Visual field index rate and event-based glaucoma progression analysis: comparison in a glaucoma population , 2009, British Journal of Ophthalmology.

[114]  J. Aronson Biomarkers and surrogate endpoints. , 2005, British journal of clinical pharmacology.

[115]  B. Bengtsson,et al.  Factors associated with lifetime risk of open‐angle glaucoma blindness , 2014, Acta ophthalmologica.

[116]  Balwantray C. Chauhan,et al.  A comparison of visual field progression criteria of 3 major glaucoma trials in early manifest glaucoma trial patients. , 2008, Ophthalmology.

[117]  Robert N Weinreb,et al.  The glaucoma research community and FDA look to the future: a report from the NEI/FDA CDER Glaucoma Clinical Trial Design and Endpoints Symposium. , 2009, Investigative ophthalmology & visual science.

[118]  R. Parrish,et al.  Visual impairment, visual functioning, and quality of life assessments in patients with glaucoma. , 1997, Transactions of the American Ophthalmological Society.

[119]  D. Henson,et al.  Quantitative Comparison of Static Perimetric Strategies in Early Glaucoma: Test‐Retest Variability , 2000, Journal of glaucoma.

[120]  Sally Okun,et al.  Patient-Reported Outcome Measures in Safety Event Reporting: PROSPER Consortium Guidance , 2013, Drug Safety.

[121]  Chris A. Johnson,et al.  The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. , 2002 .

[122]  R. P. Mills,et al.  Correlation of Visual Field With Quality-of-Life Measures at Diagnosis in the Collaborative Initial Glaucoma Treatment Study (CIGTS) , 2001, Journal of glaucoma.

[123]  B. Prum,et al.  The advanced glaucoma intervention study (AGIS): 7. the relationship between control of intraocular pressure and visual field deterioration , 2000 .

[124]  Chris A. Johnson,et al.  Delaying treatment of ocular hypertension: the ocular hypertension treatment study. , 2010, Archives of ophthalmology.

[125]  William H Swanson,et al.  The Effect of Stimulus Size on the Reliable Stimulus Range of Perimetry. , 2015, Translational vision science & technology.

[126]  R. Ritch,et al.  Defining 10-2 visual field progression criteria: exploratory and confirmatory factor analysis using pointwise linear regression. , 2014, Ophthalmology.

[127]  J. Myers Glaucoma With Early Visual Field Loss Affecting Both Hemifields and the Risk of Disease Progression , 2010 .

[128]  J. Flanagan,et al.  Pointwise univariate linear regression of perimetric sensitivity against follow-up time in glaucoma. , 1997, Ophthalmology.

[129]  I. Scott,et al.  Expert agreement in evaluating the optic disc for glaucoma. , 1992, Ophthalmology.

[130]  Programs SARGON and DELTA: Two new principles for the automated analysis of the visual field , 2004, Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie.

[131]  Bernard Schwartz,et al.  Trend analyses of automated visual fields , 1987 .

[132]  P. Palmberg Answers from the ocular hypertension treatment study. , 2002, Archives of ophthalmology.

[133]  Douglas R. Anderson,et al.  Glaucoma Progression Analysis software compared with expert consensus opinion in the detection of visual field progression in glaucoma. , 2012, Ophthalmology.

[134]  R. D'Agostino,et al.  Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. , 2007, Ophthalmology.

[135]  F. Medeiros,et al.  Association between rates of binocular visual field loss and vision-related quality of life in patients with glaucoma. , 2013, JAMA ophthalmology.

[136]  R. Ritch,et al.  Series length used during trend analysis affects sensitivity to changes in progression rate in the ocular hypertension treatment study. , 2013, Investigative ophthalmology & visual science.

[137]  B. Chauhan,et al.  Variability in patients with glaucomatous visual field damage is reduced using size V stimuli. , 1997, Investigative ophthalmology & visual science.

[138]  Richard A. Russell,et al.  New Insights into Measurement Variability in Glaucomatous Visual Fields from Computer Modelling , 2013, PloS one.

[139]  Koenraad A Vermeer,et al.  Robust and censored modeling and prediction of progression in glaucomatous visual fields. , 2013, Investigative ophthalmology & visual science.

[140]  Gang Li,et al.  Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. , 2004, Ophthalmology.

[141]  Chris A Johnson,et al.  Normal Age-Related Sensitivity Loss for a Variety of Visual Functions Throughout the Visual Field , 2006, Optometry and vision science : official publication of the American Academy of Optometry.

[142]  M. C. Leske,et al.  Treatment and vision-related quality of life in the early manifest glaucoma trial. , 2005, Ophthalmology.