Weak Dynamic Programming Principle for Viscosity Solutions

We prove a weak version of the dynamic programming principle for standard stochastic control problems and mixed control-stopping problems, which avoids the technical difficulties related to the measurable selection argument. In the Markov case, our result is tailor-made for the derivation of the dynamic programming equation in the sense of viscosity solutions.

[1]  Dimitri P. Bertsekas,et al.  Stochastic optimal control : the discrete time case , 2007 .

[2]  P. Lions Optimal control of diffusion processes and hamilton–jacobi–bellman equations part 2 : viscosity solutions and uniqueness , 1983 .

[3]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[4]  Claudia Klüppelberg,et al.  A geometric approach to portfolio optimization in models with transaction costs , 2004, Finance Stochastics.

[5]  N. Karoui Les Aspects Probabilistes Du Controle Stochastique , 1981 .

[6]  Pekka Neittaanmäki,et al.  Stochastic Control Problems , 2003 .

[7]  G. Barles,et al.  Second-order elliptic integro-differential equations: viscosity solutions' theory revisited , 2007, math/0702263.

[8]  P. Reny On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games , 1999 .

[9]  X. Zhou,et al.  Stochastic Controls: Hamiltonian Systems and HJB Equations , 1999 .

[10]  Bruno Bouchard,et al.  Optimal Control of Trading Algorithms: A General Impulse Control Approach , 2011, SIAM J. Financial Math..

[11]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[12]  M. James Controlled markov processes and viscosity solutions , 1994 .

[13]  Vivek S. Borkar,et al.  Optimal Control of Diffusion Processes , 1989 .

[14]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[15]  Michael Taylor Measure Theory and Integration , 2006 .

[16]  Karl Johan Åström,et al.  Stochastic Control Problems , 1977 .

[17]  P. Lions Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, Part I , 1983 .

[18]  B. Øksendal,et al.  Applied Stochastic Control of Jump Diffusions , 2004, Universitext.