Practical methods for including torsional anharmonicity in thermochemical calculations on complex molecules: the internal-coordinate multi-structural approximation.

Many methods for correcting harmonic partition functions for the presence of torsional motions employ some form of one-dimensional torsional treatment to replace the harmonic contribution of a specific normal mode. However, torsions are often strongly coupled to other degrees of freedom, especially other torsions and low-frequency bending motions, and this coupling can make assigning torsions to specific normal modes problematic. Here, we present a new class of methods, called multi-structural (MS) methods, that circumvents the need for such assignments by instead adjusting the harmonic results by torsional correction factors that are determined using internal coordinates. We present three versions of the MS method: (i) MS-AS based on including all structures (AS), i.e., all conformers generated by internal rotations; (ii) MS-ASCB based on all structures augmented with explicit conformational barrier (CB) information, i.e., including explicit calculations of all barrier heights for internal-rotation barriers between the conformers; and (iii) MS-RS based on including all conformers generated from a reference structure (RS) by independent torsions. In the MS-AS scheme, one has two options for obtaining the local periodicity parameters, one based on consideration of the nearly separable limit and one based on strongly coupled torsions. The latter involves assigning the local periodicities on the basis of Voronoi volumes. The methods are illustrated with calculations for ethanol, 1-butanol, and 1-pentyl radical as well as two one-dimensional torsional potentials. The MS-AS method is particularly interesting because it does not require any information about conformational barriers or about the paths that connect the various structures.

[1]  F. V. Prudente,et al.  Level distributions, partition functions, and rates of chirality changing processes for the torsional mode around O-O bonds. , 2008, The Journal of chemical physics.

[2]  Nceba Gqaleni,et al.  ACS Symposium Series , 2013 .

[3]  R. Flagan,et al.  The hindered rotor density-of-states interpolation function , 1997 .

[4]  T. Miyazawa,et al.  Normal coordinate treatments of internal-rotation vibrations , 1965 .

[5]  Thomas F. Miller,et al.  Torsional path integral Monte Carlo method for the quantum simulation of large molecules , 2002 .

[6]  V Van Speybroeck,et al.  An extended hindered-rotor model with incorporation of Coriolis and vibrational-rotational coupling for calculating partition functions and derived quantities. , 2006, The Journal of chemical physics.

[7]  Michel Waroquier,et al.  Ab initio study of radical reactions: Role of coupled internal rotations on the reaction kinetics (III) , 2002 .

[8]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[9]  D. Truhlar,et al.  Reaction‐path potential and vibrational frequencies in terms of curvilinear internal coordinates , 1995 .

[10]  Donald G. Truhlar,et al.  Statistical thermodynamics of bond torsional modes , 2000 .

[11]  N. Handy,et al.  Potential Energy Surface and Vibrational−Rotational Energy Levels of Hydrogen Peroxide , 1998 .

[12]  R. Meyer Flexible models for intramolecular motion, a versatile treatment and its application to glyoxal☆ , 1979 .

[13]  Takahiro Yamada,et al.  Ab Initio Calculations and Internal Rotor: Contribution for Thermodynamic Properties S°298 and Cp(T)'s (300 < T/K < 1500): Group Additivity for Fluoroethanes , 1998 .

[14]  G. L. Dirichlet Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .

[15]  D. Herschbach Calculation of Energy Levels for Internal Torsion and Over-All Rotation. III , 1959 .

[16]  Ekaterina I Izgorodina,et al.  How Accurate Are Approximate Methods for Evaluating Partition Functions for Hindered Internal Rotations? , 2008, The journal of physical chemistry. A.

[17]  Donald G. Truhlar,et al.  A simple approximation for the vibrational partition function of a hindered internal rotation , 1991 .

[18]  Kenneth S. Pitzer,et al.  Energy Levels and Thermodynamic Functions for Molecules with Internal Rotation I. Rigid Frame with Attached Tops , 1942 .

[19]  D. Truhlar,et al.  High-precision quantum thermochemistry on nonquasiharmonic potentials: converged path-integral free energies and a systematically convergent family of generalized Pitzer-Gwinn approximations. , 2005, The journal of physical chemistry. A.

[20]  S. Benson,et al.  Entropies and heat capacities of free radicals , 1969 .

[21]  D. Bond Computational methods in organic chemistry. 3. Correction of computed enthalpies for multiple conformations. , 2008, The journal of physical chemistry. A.

[22]  Benjamin A. Ellingson,et al.  Statistical thermodynamics of bond torsional modes: tests of separable, almost-separable, and improved Pitzer-Gwinn approximations. , 2006, The Journal of chemical physics.

[23]  I. Kiricsi,et al.  Enumeration of the Conformers of Unbranched Aliphatic Alkanes , 1998 .

[24]  Takahiro Yamada,et al.  Thermodynamic Properties (ΔHf(298), S(298), and Cp(T) (300 ≤ T ≤ 1500)) of Fluorinated Propanes , 1999 .

[25]  D. Truhlar,et al.  Reaction-path dynamics with harmonic vibration frequencies in curvilinear internal coordinates: H+trans-N2H2→N2H+H 2 , 1997 .

[26]  C. Hartwigsen,et al.  PARTITION FUNCTION AND THE LEVEL DENSITY OF THE HINDERED ROTOR , 1997 .

[27]  C. Predescu,et al.  Quantum mechanical single molecule partition function from path integral Monte Carlo simulations. , 2006, The Journal of chemical physics.

[28]  B. A. Barton,et al.  Far infrared spectra, conformational potential function, and barrier to methyl rotation of propionyl fluoride , 1983 .

[29]  Alexander F. Sax,et al.  Identification and thermodynamic treatment of several types of large‐amplitude motions , 2005, J. Comput. Chem..

[30]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[31]  R. Jernigan,et al.  Second and Fourth Moments of Chain Molecules , 1965 .

[32]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[33]  Kenneth S. Pitzer,et al.  Energy Levels and Thermodynamic Functions for Molecules with Internal Rotation: II. Unsymmetrical Tops Attached to a Rigid Frame , 1946 .

[34]  R. Lees On the equivalence of V6 to torsional flexing for molecules with threefold barriers to internal rotation , 1973 .

[35]  B. M. Fulk MATH , 1992 .

[36]  William H Green,et al.  Intramolecular hydrogen migration in alkylperoxy and hydroperoxyalkylperoxy radicals: accurate treatment of hindered rotors. , 2010, The journal of physical chemistry. A.

[37]  D. Clary,et al.  Torsional anharmonicity in the conformational thermodynamics of flexible molecules , 2005 .

[38]  Donald G Truhlar,et al.  Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries. , 2010, Journal of chemical theory and computation.

[39]  R. Janoschek,et al.  The˙NO3 Radical and Related Nitrogen Oxides, Characterized byAb Initio Calculations of Thermochemical Properties , 2002 .

[40]  Rafiqul Gani,et al.  The calculation of thermodynamic properties of molecules. , 2010, Chemical Society reviews.

[41]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[42]  D. Truhlar,et al.  Reaction-path dynamics in curvilinear internal coordinates including torsions , 1996 .

[43]  W. J. Taylor,et al.  Average Length and Radius of Normal Paraffln Hydrocarbon Molecules , 1948 .

[44]  Lev N. Krasnoperov,et al.  Ab Initio Study of α-Chlorinated Ethyl Hydroperoxides CH3CH2OOH, CH3CHClOOH, and CH3CCl2OOH: Conformational Analysis, Internal Rotation Barriers, Vibrational Frequencies, and Thermodynamic Properties , 1996 .

[45]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[46]  E. Hirota Rotational Structure of the Infrared Absorption Spectrum of Hydrogen Peroxide Vapor , 1958 .

[47]  Donald G. Truhlar,et al.  Adiabatic connection for kinetics , 2000 .

[48]  V. A. Medvedev,et al.  Thermodynamic properties of individual substances , 1982 .

[49]  A. Sax,et al.  A novel partition function for partially asymmetrical internal rotation , 2003 .

[50]  Philippe Y. Ayala,et al.  Identification and treatment of internal rotation in normal mode vibrational analysis , 1998 .

[51]  Bryan M. Wong,et al.  Effects of large-amplitude torsions on partition functions: beyond the conventional separability assumption , 2005 .

[52]  Rochus Schmid,et al.  Calculation of rotational partition functions by an efficient Monte Carlo importance sampling technique , 2005, J. Comput. Chem..

[53]  D. Clary,et al.  Torsional anharmonicity in transition state theory calculations. , 2007, Physical chemistry chemical physics : PCCP.

[54]  D. Golden,et al.  Additivity rules for the estimation of thermochemical properties , 1969 .

[55]  L. Radom,et al.  Ab initio statistical thermodynamical models for the computation of third-law entropies , 1997 .

[56]  J. F. Counsell,et al.  Thermodynamic properties of organic oxygen compounds. Part 16.—Butyl alcohol , 1965 .

[57]  Harold A. Scheraga,et al.  Conformational Analysis of Macromolecules. II. The Rotational Isomeric States of the Normal Hydrocarbons , 1966 .

[58]  M. Pilling,et al.  Partition functions and densities of states for butane and pentane , 1996 .

[59]  Anthony M. Dean,et al.  HYDROGEN ATOM BOND INCREMENTS FOR CALCULATION OF THERMODYNAMIC PROPERTIES OF HYDROCARBON RADICAL SPECIES , 1995 .

[60]  J. Hougen,et al.  Electronic spectra of molecules with two C3v internal rotors: Torsional analysis of the A˜1Au–X˜1Ag LIF spectrum of biacetyl , 2005 .

[61]  Amir Karton,et al.  Performance of ab initio and density functional methods for conformational equilibria of C(n)H(2n+2) alkane isomers (n = 4-8). , 2009, The journal of physical chemistry. A.

[62]  N. Cohen Thermochemistry of alkyl free radicals , 1992 .

[63]  H. Curran,et al.  The elimination of water from a conformationally complex alcohol: A computational study of the gas phase dehydration of n-butanol , 2009 .

[64]  Kenneth S. Pitzer,et al.  The Vibration Frequencies and Thermodynamic Functions of Long Chain Hydrocarbons , 1940 .

[65]  H. Yoshida,et al.  Conformational Study of 1-Butanol by the Combined Use of Vibrational Spectroscopy and ab Initio Molecular Orbital Calculations , 1994 .

[66]  Kenneth S. Pitzer,et al.  Energy Levels and Thermodynamic Functions for Molecules with Internal Rotation. III. Compound Rotation , 1949 .

[67]  Rotational statistics and thermodynamic functions of hydrogen peroxide , 2003 .

[68]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[69]  L. Halonen,et al.  Simulation of inversion motion and N-H stretching overtone spectra of aniline. , 2007, The Journal of chemical physics.

[70]  D. Truhlar,et al.  Accurate vibrational-rotational partition functions and standard-state free energy values for H2O2 from Monte Carlo path-integral calculations. , 2004, The Journal of chemical physics.