𝐴_{∞}-structures associated with pairs of 1-spherical objects and noncommutative orders over curves

<p>We show that pairs <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper X comma upper Y right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(X,Y)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding="application/x-tex">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spherical objects in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Subscript normal infinity"> <mml:semantics> <mml:msub> <mml:mi>A</mml:mi> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">A_\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-categories, such that the morphism space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H o m left-parenthesis upper X comma upper Y right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>Hom</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\operatorname {Hom}(X,Y)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is concentrated in degree <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="0"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding="application/x-tex">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, can be described by certain noncommutative orders over (possibly stacky) curves. In fact, we establish a more precise correspondence at the level of isomorphism of moduli spaces which we show to be affine schemes of finite type over <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper Z"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Bbb Z}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>

[1]  A. Polishchuk,et al.  Associative Yang–Baxter equation and Fukaya categories of square-tiled surfaces , 2016, Advances in Mathematics.

[2]  A. Polishchuk,et al.  A modular compactification of ℳ1,n from A ∞-structures , 2019, Journal für die reine und angewandte Mathematik (Crelles Journal).

[3]  A. Polishchuk MODULI OF CURVES WITH NONSPECIAL DIVISORS AND RELATIVE MODULI OF $A_{\infty }$ -STRUCTURES , 2015, Journal of the Institute of Mathematics of Jussieu.

[4]  A. Polishchuk Moduli of curves as moduli of $A_{\infty}$-structures , 2013, 1312.4636.

[5]  A. Polishchuk,et al.  Arithmetic mirror symmetry for genus 1 curves with n marked points , 2016, 1601.06141.

[6]  A. Polishchuk,et al.  A modular compactification of $\mathcal{M}_{1,n}$ from $A_\infty$-structures , 2014, 1408.0611.

[7]  T. Perutz,et al.  Arithmetic mirror symmetry for the 2-torus , 2012, 1211.4632.

[8]  P. Seidel Abstract analogues of flux as symplectic invariants , 2011, 1108.0394.

[9]  D. Smyth Modular compactifications of the space of pointed elliptic curves I , 2010, Compositio Mathematica.

[10]  D. Abramovich,et al.  Burniat surfaces I: fundamental groups and moduli of primary Burniat surfaces , 2009 .

[11]  A. Polishchuk Massey products on cycles of projective lines and trigonometric solutions of the Yang-Baxter equations , 2006, math/0612761.

[12]  Fabio Nironi Grothendieck Duality for Deligne-Mumford Stacks , 2008, 0811.1955.

[13]  Paul Seidel,et al.  Fukaya Categories and Picard-Lefschetz Theory , 2008 .

[14]  D. Orlov Remarks on generators and dimensions of triangulated categories , 2008, 0804.1163.

[15]  M. Kontsevich,et al.  Notes on A∞-Algebras, A∞-Categories and Non-Commutative Geometry , 2006, math/0606241.

[16]  Adam-Christiaan van Roosmalen Abelian 1-Calabi-Yau Categories , 2007, math/0703457.

[17]  H. Minamoto A noncommutative version of Beilinson's Theorem , 2007, math/0702861.

[18]  D. Piontkovski Coherent algebras and noncommutative projective lines , 2006, math/0606279.

[19]  M. Bergh On global deformation quantization in the algebraic case , 2006, math/0603200.

[20]  D. Auroux,et al.  Mirror symmetry for weighted projective planes and their noncommutative deformations , 2004, math/0404281.

[21]  C. Lazaroiu D-brane categories , 2003, hep-th/0305095.

[22]  A. Polishchuk Extensions of homogeneous coordinate rings to $A_ \infty$-algebras , 2003, math/0302178.

[23]  A. Polishchuk EXTENSIONS OF HOMOGENEOUS COORDINATE RINGS TO A1-ALGEBRAS , 2003 .

[24]  A. Polishchuk Classical Yang–Baxter Equation and the A∞-Constraint , 2002 .

[25]  J. Starr,et al.  Quot Functors for Deligne-Mumford Stacks , 2002, math/0204307.

[26]  James J. Zhang,et al.  Dualizing Complexes over Noncommutative Local Rings , 2001 .

[27]  M. Kontsevich,et al.  Homological mirror symmetry and torus fibrations , 2000, math/0011041.

[28]  Richard P. Thomas,et al.  Braid group actions on derived categories of coherent sheaves , 2000, math/0001043.

[29]  Bernhard Keller,et al.  Introduction to $A$-infinity algebras and modules , 1999, math/9910179.

[30]  James J. Zhang Non-noetherian regular rings of dimension 2 , 1998 .

[31]  M. Bergh Existence Theorems for Dualizing Complexes over Non-commutative Graded and Filtered Rings , 1997 .

[32]  Peter Jørgensen Local cohomology for non-commutative graded algebras , 1997 .

[33]  James J. Zhang,et al.  Noncommutative Projective Schemes , 1994 .

[34]  V. Schechtman,et al.  DEFORMATION THEORY AND LIE ALGEBRA HOMOLOGY , 1994, alg-geom/9405013.

[35]  M. Bergh Noncommutative homology of some three-dimensional quantum spaces , 1994 .

[36]  A. Bondal,et al.  HOMOLOGICAL PROPERTIES OF ASSOCIATIVE ALGEBRAS: THE METHOD OF HELICES , 1994 .

[37]  R. Warfield,et al.  Prime affine algebras of Gelfand—Kirillov dimension one , 1984 .

[38]  Robin Hartshorne,et al.  Algebraic geometry , 1977, Graduate texts in mathematics.

[39]  W. Schelter On the Krull-Akizuki Theorem , 1976 .

[40]  T. Willmore Algebraic Geometry , 1973, Nature.