Out of rock: A new look at the morphological and geochemical preservation of microfossils from the 3.46 Gyr-old Strelley Pool Formation

[1]  D. Oehler,et al.  Early Archean planktonic mode of life: Implications from fluid dynamics of lenticular microfossils , 2018, Geobiology.

[2]  S. Derenne,et al.  What is the meaning of hydrogen-to-carbon ratio determined in Archean organic matter? , 2018, Organic Geochemistry.

[3]  F. Robert,et al.  Chemical nature of the 3.4 Ga Strelley Pool microfossils , 2018, Geochemical Perspectives Letters.

[4]  K. Sugitani,et al.  Speciation of Paleoarchean Life Demonstrated by Analysis of the Morphological Variation of Lenticular Microfossils from the Pilbara Craton, Australia. , 2018, Astrobiology.

[5]  F. Robert,et al.  Can NanoSIMS probe quantitatively the geochemical composition of ancient organic-walled microfossils? A case study from the early Neoproterozoic Liulaobei Formation , 2018, Precambrian Research.

[6]  S. Derenne,et al.  Nitrogen isotope signatures of microfossils suggest aerobic metabolism 3.0 Gyr ago , 2018, Geochemical Perspectives Letters.

[7]  D. Pyle,et al.  Volcanogenic Pseudo-Fossils from the ∼3.48 Ga Dresser Formation, Pilbara, Western Australia , 2018, Astrobiology.

[8]  J. García‐Ruiz,et al.  A morphogram for silica‐witherite biomorphs and its application to microfossil identification in the early earth rock record , 2018, Geobiology.

[9]  J. Schopf,et al.  SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions , 2017, Proceedings of the National Academy of Sciences.

[10]  S. Derenne,et al.  Investigation of the Geochemical Preservation of ca. 3.0 Ga Permineralized and Encapsulated Microfossils by Nanoscale Secondary Ion Mass Spectrometry , 2017, Astrobiology.

[11]  B. Kremer,et al.  Cellularly preserved microbial fossils from ∼3.4 Ga deposits of South Africa: A testimony of early appearance of oxygenic life? , 2017 .

[12]  D. Oehler,et al.  Large and robust lenticular microorganisms on the young Earth , 2017 .

[13]  F. Robert,et al.  Organic molecular heterogeneities can withstand diagenesis , 2017, Scientific Reports.

[14]  Meaghan C. Sullivan,et al.  Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa , 2017, Proceedings of the National Academy of Sciences.

[15]  F. Robert,et al.  Early entombment within silica minimizes the molecular degradation of microorganisms during advanced diagenesis , 2016 .

[16]  A. Templeton,et al.  Self-assembly of biomorphic carbon/sulfur microstructures in sulfidic environments , 2016, Nature Communications.

[17]  J. Rouzaud,et al.  The Raman-Derived Carbonization Continuum: A Tool to Select the Best Preserved Molecular Structures in Archean Kerogens , 2016, Astrobiology.

[18]  E. Javaux,et al.  Early evolution of large micro‐organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic‐walled microfossils , 2015, Geobiology.

[19]  K. Sugitani,et al.  A Paleoarchean coastal hydrothermal field inhabited by diverse microbial communities: the Strelley Pool Formation, Pilbara Craton, Western Australia , 2015, Geobiology.

[20]  H. Sanei,et al.  Characterization of organic matter fractions in an unconventional tight gas siltstone reservoir , 2015 .

[21]  A. Simionovici,et al.  Silica precipitation triggered by clastic sedimentation in the Archean: New petrographic evidence from cherts of the Kromberg type section, South Africa , 2014 .

[22]  B. Horsfield,et al.  Thermal Maturation of Gas Shale Systems , 2014 .

[23]  F. Robert,et al.  Determination of the nitrogen abundance in organic materials by NanoSIMS quantitative imaging , 2014 .

[24]  K. Williford,et al.  Texture-specific isotopic compositions in 3.4 Gyr old organic matter support selective preservation in cell-like structures , 2013 .

[25]  G. Jensen,et al.  Polyphosphate Storage during Sporulation in the Gram-Negative Bacterium Acetonema longum , 2013, Journal of bacteriology.

[26]  D. Oehler,et al.  Carbon isotopic analyses of ca. 3.0 Ga microstructures imply planktonic autotrophs inhabited Earth’s early oceans , 2013 .

[27]  K. Lepot,et al.  Microfossil assemblage from the 3400Ma Strelley Pool Formation in the Pilbara Craton, Western Australia: Results form a new locality , 2013 .

[28]  Derek K. Gerstmann,et al.  Taphonomy of very ancient microfossils from the ∼3400Ma Strelley Pool Formation and ∼1900Ma Gunflint Formation: New insights using a focused ion beam , 2012 .

[29]  David Wacey,et al.  Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia , 2011 .

[30]  Jozef Nahalka,et al.  Polyphosphate - an ancient energy source and active metabolic regulator , 2011, Microbial cell factories.

[31]  D. Oehler,et al.  Biogenicity of morphologically diverse carbonaceous microstructures from the ca. 3400 Ma Strelley pool formation, in the Pilbara Craton, Western Australia. , 2010, Astrobiology.

[32]  M. Walter,et al.  Trace elements record depositional history of an Early Archean stromatolitic carbonate platform , 2010 .

[33]  D. Oehler,et al.  NanoSIMS: Insights to biogenicity and syngeneity of Archaean carbonaceous structures , 2009 .

[34]  D. Wacey,et al.  NanoSIMS analysis of Archean fossils and biomarkers , 2008 .

[35]  C. Marshall,et al.  Diverse microstructures from Archaean chert from the Mount Goldsworthy–Mount Grant area, Pilbara Craton, Western Australia: Microfossils, dubiofossils, or pseudofossils? , 2007 .

[36]  R. Seifert,et al.  Extracellular polymeric substances (EPS) from cyanobacterial mats: characterisation and isolation method optimisation , 2007 .

[37]  C. D. de Ronde,et al.  Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[38]  Abigail C. Allwood,et al.  Stromatolite reef from the Early Archaean era of Australia , 2006, Nature.

[39]  M. Ikehara,et al.  Middle Archean volcano-hydrothermal sequence: Bacterial microfossil-bearing 3.2 Ga Dixon Island Formation, coastal Pilbara terrane, Australia , 2006 .

[40]  R. Reid,et al.  Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite , 2005 .

[41]  M. V. Kranendonk,et al.  Self-Assembled Silica-Carbonate Structures and Detection of Ancient Microfossils , 2003, Science.

[42]  J. Schopf,et al.  CARBONACEOUS FILAMENTS FROM NORTH POLE , WESTERN AUSTRALIA : ARE THEY FOSSIL BACTERIA IN ARCHEAN STROMATOLITES ? A DISCUSSION , 2002 .

[43]  Christopher P. McKay,et al.  A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning , 2001, Nature.

[44]  Y. Isozaki,et al.  Carbon Isotopic Signatures of Individual Archean Microfossils(?) from Western Australia , 2001 .

[45]  D. Gerneke,et al.  Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa , 2001 .

[46]  B. Rasmussen,et al.  Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit , 2000, Nature.

[47]  F. Robert,et al.  Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? , 1999 .

[48]  Yumiko Watanabe,et al.  Carbon, nitrogen, and sulfur geochemistry of Archean and Proterozoic shales from the Kaapvaal Craton, South Africa , 1997 .

[49]  F. Sansone,et al.  Texture of Microbial Sediments Revealed by Cryo-Scanning Electron Microscopy , 1996 .

[50]  J. Jehlička,et al.  Application of Raman microspectrometry in the study of structural changes in precambrian kerogens during regional metamorphism , 1992 .

[51]  M. Walsh,et al.  Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. , 1992, Precambrian research.

[52]  R. Buick Microfossil recognition in Archean rocks : an appraisal of spheroids and filaments from a 3500 M.Y. old chert-barite unit at North Pole, Western Australia , 1990 .

[53]  R. Buick Carbonaceous filaments from North Pole, Western Australia: Are they fossil bacteria in archean stromatolites? A discussion , 1988 .

[54]  J. Curiale Origin of solid bitumens, with emphasis on biological marker results , 1986 .

[55]  M. Walsh,et al.  Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa , 1985, Nature.

[56]  Stanley M. Awramik,et al.  Filamentous fossil bacteria from the Archean of Western Australia , 1983 .