On the error estimates for the rotational pressure-correction projection methods

In this paper we study the rotational form of the pressure-correction method that was proposed by Timmermans, Minev, and Van De Vosse. We show that the rotational form of the algorithm provides better accuracy in terms of the H1-norm of the velocity and of the L2-norm of the pressure than the standard form.

[1]  S. Orszag,et al.  Boundary conditions for incompressible flows , 1986 .

[2]  Jie Shen,et al.  On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes , 1996, Math. Comput..

[3]  Jie Shen On error estimates of projection methods for Navier-Stokes equations: first-order schemes , 1992 .

[4]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[5]  Alexandre J. Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .

[6]  Frans N. van de Vosse,et al.  An approximate projec-tion scheme for incompressible ow using spectral elements , 1996 .

[7]  ShenJie Efficient spectral-Galerkin method I , 1994 .

[8]  Jie Shen Remarks on the pressure error estimates for the projection methods , 1994 .

[9]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[10]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[11]  R. Rannacher On chorin's projection method for the incompressible navier-stokes equations , 1992 .

[12]  G. W. Reddien,et al.  Projection Methods , 2021, Introduction to the Numerical Solution of Markov Chains.

[13]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[14]  Jean-Luc Guermond,et al.  Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale , 1999 .

[15]  Jie Shen,et al.  Velocity-Correction Projection Methods for Incompressible Flows , 2003, SIAM J. Numer. Anal..

[16]  Jian‐Guo Liu,et al.  Projection method I: convergence and numerical boundary layers , 1995 .

[17]  ShenDepartment,et al.  On Pressure Stabilization Method and Projection Methodfor Unsteady Navier-Stokes Equations , 1992 .

[18]  K. Goda,et al.  A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows , 1979 .

[19]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[20]  John C. Strikwerda,et al.  The Accuracy of the Fractional Step Method , 1999, SIAM J. Numer. Anal..

[21]  E Weinan,et al.  Projection method III: Spatial discretization on the staggered grid , 2002, Math. Comput..

[22]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[23]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[24]  Jie Shen,et al.  Quelques résultats nouveaux sur les méthodes de projection , 2001 .