Adaptive poromechanics computations based on a posteriori error estimates for fully mixed formulations of Biot’s consolidation model

This paper is concerned with the analysis of coupled mixed finite element methods applied to the Biot's consolidation model. We consider two mixed formulations that use the stress tensor and Darcy velocity as primary variables as well as the displacement and pressure. The first formulation is with a symmetric stress tensor while the other enforces the symmetry of the stress weakly through the introduction of a Lagrange multiplier. The well-posedness of the two formulations is shown through Galerkin's method and suitable a priori estimates. The two formulations are then discretized with the backward Euler scheme in time and with two mixed finite elements in space. We present next a general and unified a posteriori error analysis which is applicable for any flux- and stress-conforming discretization. Our estimates are based on $H^{1}(\Omega)$-conforming reconstruction of the pressure and a suitable $\left[H^{1}(\Omega)\right]^{d}$-conforming reconstruction of the displacement; both are continuous and piecewise affine in time. These reconstructions are used to infer a guaranteed and fully computable upper bound on the energy-type error measuring the differences between the exact and the approximate pressure and displacement. The error components resulting from the spatial and the temporal discretization are distinguished. They are then used to design an adaptive space--time algorithm. Numerical experiments illustrate the efficiency of our estimates and the performance of the adaptive algorithm.

[1]  Elyes Ahmed,et al.  A reduced fracture model for two-phase flow with different rock types , 2017, Math. Comput. Simul..

[2]  M. Biot THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID , 1955 .

[3]  L. Zikatanov,et al.  New stabilized discretizations for poroelasticity and the Stokes’ equations , 2017, Computer Methods in Applied Mechanics and Engineering.

[4]  Martin Vohralík,et al.  A unified framework for a posteriori error estimation for the Stokes problem , 2012, Numerische Mathematik.

[5]  Ricardo H. Nochetto,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[6]  J. Nordbotten,et al.  Finite volume methods for elasticity with weak symmetry , 2015, 1512.01042.

[7]  Mary F. Wheeler,et al.  A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case , 2007 .

[8]  Miguel A. Fernández,et al.  Numerical simulation of blood flows through a porous interface , 2008 .

[9]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[10]  Kundan Kumar,et al.  Anderson accelerated fixed-stress splitting schemes for consolidation of unsaturated porous media , 2018, Comput. Math. Appl..

[11]  Martin Vohralík,et al.  Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods , 2010, Math. Comput..

[12]  Son-Young Yi Convergence analysis of a new mixed finite element method for Biot's consolidation model , 2014 .

[13]  R. Showalter Diffusion in Poro-Elastic Media , 2000 .

[14]  Martin Vohralík,et al.  A Framework for Robust A Posteriori Error Control in Unsteady Nonlinear Advection-Diffusion Problems , 2013, SIAM J. Numer. Anal..

[15]  V. Milišić Blood-flow modelling along and through a braided multi-layer metallic stent , 2009, 0908.2513.

[16]  Rolf Stenberg,et al.  Energy norm a posteriori error estimates for mixed finite element methods , 2006, Math. Comput..

[17]  JAN MARTIN NORDBOTTEN,et al.  Stable Cell-Centered Finite Volume Discretization for Biot Equations , 2015, SIAM J. Numer. Anal..

[18]  Martin Vohralík,et al.  A Posteriori Error Estimation Based on Potential and Flux Reconstruction for the Heat Equation , 2010, SIAM J. Numer. Anal..

[19]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[20]  J. Nordbotten,et al.  Upscaling of the Coupling of Hydromechanical and Thermal Processes in a Quasi-static Poroelastic Medium , 2018, Transport in Porous Media.

[21]  David Kay,et al.  Stabilized Lowest-Order Finite Element Approximation for Linear Three-Field Poroelasticity , 2015, SIAM J. Sci. Comput..

[22]  Todd Arbogast,et al.  Mixed methods using standard conforming finite elements , 2009 .

[23]  Jun Tan,et al.  Error analysis of primal discontinuous Galerkin methods for a mixed formulation of the Biot equations , 2017, Comput. Math. Appl..

[24]  L E Plansky On the management organization and procedural standardization of geologic research , 1985 .

[25]  M. Wheeler,et al.  A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity , 2008 .

[26]  Martin Vohralík,et al.  An adaptive hp-refinement strategy with computable guaranteed bound on the error reduction factor , 2017, Comput. Math. Appl..

[27]  Jeonghun J. Lee,et al.  Weakly Imposed Symmetry and Robust Preconditioners for Biot’s Consolidation Model , 2017, Comput. Methods Appl. Math..

[28]  A. Ženíšek,et al.  The existence and uniqueness theorem in Biot's consolidation theory , 1984 .

[29]  Daniele Boffi,et al.  Analysis of Finite Element Approximation of Evolution Problems in Mixed Form , 2004, SIAM J. Numer. Anal..

[30]  Mary F. Wheeler,et al.  A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete-in-time case , 2007 .

[31]  Ruben Juanes,et al.  Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering , 2014 .

[32]  S. Hassan A posteriori error estimates and stopping criteria for solvers using the domain decomposition method and with local time stepping , 2017 .

[33]  F. Radu,et al.  Space–time finite element approximation of the Biot poroelasticity system with iterative coupling , 2016, 1611.06335.

[34]  Martin Vohralík,et al.  A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media , 2014, J. Comput. Phys..

[35]  Hongxing Rui,et al.  A coupling of weak Galerkin and mixed finite element methods for poroelasticity , 2017, Comput. Math. Appl..

[36]  Ludmil T. Zikatanov,et al.  A finite element framework for some mimetic finite difference discretizations , 2015, Comput. Math. Appl..

[37]  Jeonghun J. Lee,et al.  Parameter-Robust Discretization and Preconditioning of Biot's Consolidation Model , 2015, SIAM J. Sci. Comput..

[38]  Daniele Boffi,et al.  A Nonconforming High-Order Method for the Biot Problem on General Meshes , 2015, SIAM J. Sci. Comput..

[39]  Sébastien Meunier,et al.  A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems , 2009 .

[40]  Abimael F. D. Loula,et al.  Improved accuracy in finite element analysis of Biot's consolidation problem , 1992 .

[41]  Elyes Ahmed,et al.  Well-posedness of the fully coupled quasi-static thermo-poroelastic equations with nonlinear convective transport , 2018, Journal of Mathematical Analysis and Applications.

[42]  Clément Cancès,et al.  An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow , 2013, Math. Comput..

[43]  Douglas N. Arnold,et al.  Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..

[44]  Rüdiger Verfürth,et al.  A posteriori error estimates for finite element discretizations of the heat equation , 2003 .

[45]  Eirik Keilegavlen,et al.  A finite-volume discretization for deformation of fractured media , 2018, Computational Geosciences.

[46]  Martin Vohralík,et al.  Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem , 2014, Math. Comput..

[47]  Nicola Castelletto,et al.  Scalable algorithms for three-field mixed finite element coupled poromechanics , 2016, J. Comput. Phys..

[48]  Son-Young Yi A coupling of nonconforming and mixed finite element methods for Biot's consolidation model , 2013 .

[49]  Mark Ainsworth,et al.  A Posteriori Error Estimation for Lowest Order Raviart-Thomas Mixed Finite Elements , 2007, SIAM J. Sci. Comput..

[50]  Nicola Castelletto,et al.  Thermo‐hydro‐mechanical modeling of fluid geological storage by Godunov‐mixed methods , 2012 .

[51]  Jeonghun J. Lee,et al.  Robust Error Analysis of Coupled Mixed Methods for Biot’s Consolidation Model , 2015, J. Sci. Comput..

[52]  Jan M. Nordbotten,et al.  Robust fixed stress splitting for Biot's equations in heterogeneous media , 2017, Appl. Math. Lett..

[53]  Ivan Yotov,et al.  Domain decomposition and multiscale mortar mixed finite element methods for linear elasticity with weak stress symmetry , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.

[54]  Ivan Yotov,et al.  A Lagrange multiplier method for a Stokes–Biot fluid–poroelastic structure interaction model , 2017, Numerische Mathematik.

[55]  Zhangxin Chen,et al.  On the implementation of mixed methods as nonconforming methods for second-order elliptic problems , 1995 .

[56]  Alexandre Ern,et al.  Stress and flux reconstruction in Biot's poro-elasticity problem with application to a posteriori error analysis , 2017, Comput. Math. Appl..

[57]  Kwang-Yeon Kim,et al.  Guaranteed A Posteriori Error Estimator for Mixed Finite Element Methods of Linear Elasticity with Weak Stress Symmetry , 2011, SIAM J. Numer. Anal..