Controlling spectral selectivity in optoelectronics via photonic band engineering in absorbing media

The most common solution for achieving arbitrary spectral selectivity in optoelectronic devices is adding external filters. Here we propose using semiconductor thin film photonic crystals with relevant photonic bands that fall within the absorbing frequency range of the material for spectral selectivity. Optical simulations show that the in-plane photonic bands couple strongly to normal-incidence external fields, inducing tunable resonance features in the out-of-plane transmission and reflection spectra. Experimentally, we fabricate a proof-of-principle photonic structure with enhanced visible transparency, consisting of a self-assembled polystyrene bead array infiltrated with colloidal quantum dots, showing promise for multijunction and transparent photovoltaics.

[1]  J. Joannopoulos,et al.  Temporal coupled-mode theory for the Fano resonance in optical resonators. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  E. Sargent Infrared photovoltaics made by solution processing , 2009 .

[3]  Rene Lopez,et al.  Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers. , 2009, Optics express.

[4]  Peter Bermel,et al.  Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. , 2007, Optics express.

[5]  Edward H. Sargent,et al.  Tandem colloidal quantum dot solar cells employing a graded recombination layer , 2011 .

[6]  Masaya Notomi,et al.  Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip , 2014, Nature Photonics.

[7]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light - Second Edition , 2008 .

[8]  Ronald K. Hanson,et al.  Infrared laser-absorption sensing for combustion gases , 2017 .

[9]  Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency , 2001 .

[10]  J.A. Ratches,et al.  Target acquisition performance modeling of infrared imaging systems: past, present, and future , 2001, IEEE Sensors Journal.

[11]  Shanhui Fan,et al.  Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities , 2004 .

[12]  A. D. Vos,et al.  Detailed balance limit of the efficiency of tandem solar cells , 1980 .

[13]  Lifeng Li,et al.  Use of Fourier series in the analysis of discontinuous periodic structures , 1996 .

[14]  Drago Bračun,et al.  Spectral selective and difference imaging laser triangulation measurement system for on line measurement of large hot workpieces in precision open die forging , 2017 .

[15]  S. Fan,et al.  Light trapping in photonic crystals , 2022 .

[16]  Lifeng Li Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings , 1996 .

[17]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[18]  Lifeng Li,et al.  New formulation of the Fourier modal method for crossed surface-relief gratings , 1997 .

[19]  Edward H. Sargent Colloidal quantum dot solar cells , 2012 .

[20]  N. Park,et al.  Empowering Semi‐Transparent Solar Cells with Thermal‐Mirror Functionality , 2016 .

[21]  Soon-Hong Kwon,et al.  Electrically Driven Single-Cell Photonic Crystal Laser , 2004, Science.

[22]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[23]  Yida Lin,et al.  Color-tuned and transparent colloidal quantum dot solar cells via optimized multilayer interference. , 2017, Optics express.

[24]  C. L. Cheung,et al.  Fabrication of nanopillars by nanosphere lithography , 2006 .

[25]  Edward H. Sargent,et al.  Broadband solar absorption enhancement via periodic nanostructuring of electrodes , 2013, Scientific Reports.

[26]  Joseph J. Talghader,et al.  Spectral selectivity in infrared thermal detection , 2012, Light: Science & Applications.

[27]  V. Lucarini Kramers-Kronig relations in optical materials research , 2005 .

[28]  G. Konstantatos,et al.  Ultrasensitive solution-cast quantum dot photodetectors , 2006, Nature.

[29]  Masaya Notomi,et al.  Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip , 2011, IET Circuits Devices Syst..

[30]  A. Sievers,et al.  Spectral selectivity of high-temperature solar absorbers. , 1980, Applied optics.

[31]  A. Chutinan,et al.  Light trapping and absorption optimization in certain thin-film photonic crystal architectures , 2008 .