On block diagonal and Schur complement preconditioning

SummaryWe study symmetric positive definite linear systems, with a 2-by-2 block matrix preconditioned by inverting directly one of the diagonal blocks and suitably preconditioning the other. Using an approximate version of Young's “Property A”, we show that the condition number of the Schur complement is smaller than the condition number obtained by the block-diagonal preconditioning. We also get bounds on both condition numbers from a strengthened Cauchy inequality. For systems arising from the finite element method, the bounds do not depend on the number of elements and can be obtained from element-by-element computations. The results are applied to thep-version finite element method, where the first block of variables consists of degrees of freedom of a low order.

[1]  David M. Young Generalizations of Property A and Consistent Orderings , 1972 .

[2]  J. Neumann,et al.  Numerical inverting of matrices of high order , 1947 .

[3]  Gene H. Golub,et al.  Matrix computations , 1983 .

[4]  Bart W. Stuck,et al.  A Computer and Communication Network Performance Analysis Primer (Prentice Hall, Englewood Cliffs, NJ, 1985; revised, 1987) , 1987, Int. CMG Conference.

[5]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[6]  Jan Mandel,et al.  Iterative solvers by substructuring for the p -version finite element method , 1990 .

[7]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[8]  I. Babuska,et al.  Efficient preconditioning for the p -version finite element method in two dimensions , 1991 .

[9]  J. Z. Zhu,et al.  The finite element method , 1977 .

[10]  H. F. Jordan,et al.  Is SOR Color-Blind? , 1986 .

[11]  J. Reid The Use of Conjugate Gradients for Systems of Linear Equations Possessing “Property A” , 1972 .

[12]  William Gropp,et al.  A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation , 1985, PP.

[13]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[14]  J. Altenbach Zienkiewicz, O. C., The Finite Element Method. 3. Edition. London. McGraw‐Hill Book Company (UK) Limited. 1977. XV, 787 S. , 1980 .

[15]  D. Braess The contraction number of a multigrid method for solving the Poisson equation , 1981 .

[16]  H. Yserentant Erratum. On the Multi-Level Splitting of Finite Element Spaces.(Numer. Math. 49, 379-412 (1986)). , 1986 .

[17]  R. Plemmons,et al.  IMPROVING JACOBI AND GAUSS-SEIDEL ITERATIONS , 1987 .

[18]  Ivo Babuška,et al.  The p - and h-p version of the finite element method, an overview , 1990 .

[19]  D. J. Paddon,et al.  Multigrid Methods for Integral and Differential Equations. , 1987 .

[20]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .

[21]  I. Gustafsson,et al.  Preconditioning and two-level multigrid methods of arbitrary degree of approximation , 1983 .