Unrestricted stone duality for Markov processes
暂无分享,去创建一个
Kim G. Larsen | Robert Furber | Prakash Panangaden | Radu Mardare | Dexter Kozen | P. Panangaden | D. Kozen | K. Larsen | R. Mardare | Robert Furber
[1] Vincent Danos,et al. Bisimulation and cocongruence for probabilistic systems , 2006, Inf. Comput..
[2] Tadeusz Litak,et al. Stone duality for nominal Boolean algebras with ‘ new ’ : topologising Banonas , 2011 .
[3] Robert Goldblatt,et al. On the role of the Baire Category Theorem and Dependent Choice in the foundations of logic , 1985, Journal of Symbolic Logic.
[4] A. Tarski,et al. Boolean Algebras with Operators. Part I , 1951 .
[5] Robert J. Aumann,et al. Interactive epistemology I: Knowledge , 1999, Int. J. Game Theory.
[6] Prakash Panangaden,et al. Strong Completeness for Markovian Logics , 2013, MFCS.
[7] Alexandra Silva,et al. Brzozowski's Algorithm (Co)Algebraically , 2011, Logic and Program Semantics.
[8] Abbas Edalat,et al. Bisimulation for Labelled Markov Processes , 2002, Inf. Comput..
[9] Kim G. Larsen,et al. Stone Duality for Markov Processes , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.
[10] A. Pitts. INTRODUCTION TO HIGHER ORDER CATEGORICAL LOGIC (Cambridge Studies in Advanced Mathematics 7) , 1987 .
[11] Tadeusz Litak,et al. Stone Duality for Nominal Boolean Algebras with И , 2011, CALCO.
[12] J. Dunn,et al. Complete deductive systems for probability logic with application to harsanyi type spaces , 2007 .
[13] E. Doberkat. Stochastic Relations : Foundations for Markov Transition Systems , 2007 .
[14] Serge Grigorieff,et al. Duality and Equational Theory of Regular Languages , 2008, ICALP.
[15] Joël Ouaknine,et al. Duality for Labelled Markov Processes , 2004, FoSSaCS.
[16] Bart Jacobs,et al. Probabilities, distribution monads, and convex categories , 2011, Theor. Comput. Sci..
[17] M. Andrew Moshier,et al. A Duality Theorem for Real C* Algebras , 2009, CALCO.
[18] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[19] Roman Sikorski,et al. On the inducing of homomorphisms by mappings , 1949 .
[20] S. Ulam,et al. Zur Masstheorie in der allgemeinen Mengenlehre , 1930 .
[21] R. M. Dudley,et al. Real Analysis and Probability , 1989 .
[22] E. Hewitt. Linear functionals on spaces of continuous functions , 1950 .
[23] P. Halmos. Lectures on Boolean Algebras , 1963 .
[24] Prakash Panangaden,et al. Labelled Markov Processes , 2009 .
[25] R. Blute,et al. Bisimulation for Labeled Markov Processes , 1997 .
[26] Robert Goldblatt,et al. Deduction Systems for Coalgebras Over Measurable Spaces , 2010, J. Log. Comput..
[27] A. Tarski,et al. Boolean Algebras with Operators , 1952 .
[28] Marcello M. Bonsangue,et al. Duality for Logics of Transition Systems , 2005, FoSSaCS.
[29] Prakash Panangaden,et al. Minimization via Duality , 2012, WoLLIC.
[30] H. Bateman. Book Review: Ergebnisse der Mathematik und ihrer Grenzgebiete , 1933 .
[31] Robert MullerAugust,et al. Le ture Notes on Domain Theory , 2007 .
[32] J. Norris. Appendix: probability and measure , 1997 .
[33] Dexter Kozen,et al. A probabilistic PDL , 1983, J. Comput. Syst. Sci..
[34] Enrique Alonso,et al. The Life and Work of Leon Henkin: Essays on His Contributions , 2014 .
[35] J. Słomiński,et al. The theory of abstract algebras with infinitary operations , 1959 .
[36] Helena Rasiowa,et al. A proof of the completeness theorem of Grödel , 1950 .
[37] M. Stone. The theory of representations for Boolean algebras , 1936 .
[38] Robert Goldblatt,et al. The Countable Henkin Principle , 2014 .
[39] Kim G. Larsen,et al. Bisimulation through Probabilistic Testing , 1991, Inf. Comput..
[40] Kim G. Larsen,et al. Continuous Markovian Logic - From Complete Axiomatization to the Metric Space of Formulas , 2011, CSL.
[41] Samson Abramsky,et al. Domain Theory in Logical Form , 1991, LICS.