Unrestricted stone duality for Markov processes

Stone duality relates logic, in the form of Boolean algebra, to spaces. Stone-type dualities abound in computer science and have been of great use in understanding the relationship between computational models and the languages used to reason about them. Recent work on probabilistic processes has established a Stone-type duality for a restricted class of Markov processes. The dual category was a new notion—Aumann algebras—which are Boolean algebras equipped with countable family of modalities indexed by rational probabilities. In this article we consider an alternative definition of Aumann algebra that leads to dual adjunction for Markov processes that is a duality for many measurable spaces occurring in practice. This extends a duality for measurable spaces due to Sikorski. In particular, we do not require that the probabilistic modalities preserve a distinguished base of clopen sets, nor that morphisms of Markov processes do so. The extra generality allows us to give a perspicuous definition of event bisimulation on Aumann algebras.

[1]  Vincent Danos,et al.  Bisimulation and cocongruence for probabilistic systems , 2006, Inf. Comput..

[2]  Tadeusz Litak,et al.  Stone duality for nominal Boolean algebras with ‘ new ’ : topologising Banonas , 2011 .

[3]  Robert Goldblatt,et al.  On the role of the Baire Category Theorem and Dependent Choice in the foundations of logic , 1985, Journal of Symbolic Logic.

[4]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[5]  Robert J. Aumann,et al.  Interactive epistemology I: Knowledge , 1999, Int. J. Game Theory.

[6]  Prakash Panangaden,et al.  Strong Completeness for Markovian Logics , 2013, MFCS.

[7]  Alexandra Silva,et al.  Brzozowski's Algorithm (Co)Algebraically , 2011, Logic and Program Semantics.

[8]  Abbas Edalat,et al.  Bisimulation for Labelled Markov Processes , 2002, Inf. Comput..

[9]  Kim G. Larsen,et al.  Stone Duality for Markov Processes , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[10]  A. Pitts INTRODUCTION TO HIGHER ORDER CATEGORICAL LOGIC (Cambridge Studies in Advanced Mathematics 7) , 1987 .

[11]  Tadeusz Litak,et al.  Stone Duality for Nominal Boolean Algebras with И , 2011, CALCO.

[12]  J. Dunn,et al.  Complete deductive systems for probability logic with application to harsanyi type spaces , 2007 .

[13]  E. Doberkat Stochastic Relations : Foundations for Markov Transition Systems , 2007 .

[14]  Serge Grigorieff,et al.  Duality and Equational Theory of Regular Languages , 2008, ICALP.

[15]  Joël Ouaknine,et al.  Duality for Labelled Markov Processes , 2004, FoSSaCS.

[16]  Bart Jacobs,et al.  Probabilities, distribution monads, and convex categories , 2011, Theor. Comput. Sci..

[17]  M. Andrew Moshier,et al.  A Duality Theorem for Real C* Algebras , 2009, CALCO.

[18]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[19]  Roman Sikorski,et al.  On the inducing of homomorphisms by mappings , 1949 .

[20]  S. Ulam,et al.  Zur Masstheorie in der allgemeinen Mengenlehre , 1930 .

[21]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[22]  E. Hewitt Linear functionals on spaces of continuous functions , 1950 .

[23]  P. Halmos Lectures on Boolean Algebras , 1963 .

[24]  Prakash Panangaden,et al.  Labelled Markov Processes , 2009 .

[25]  R. Blute,et al.  Bisimulation for Labeled Markov Processes , 1997 .

[26]  Robert Goldblatt,et al.  Deduction Systems for Coalgebras Over Measurable Spaces , 2010, J. Log. Comput..

[27]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[28]  Marcello M. Bonsangue,et al.  Duality for Logics of Transition Systems , 2005, FoSSaCS.

[29]  Prakash Panangaden,et al.  Minimization via Duality , 2012, WoLLIC.

[30]  H. Bateman Book Review: Ergebnisse der Mathematik und ihrer Grenzgebiete , 1933 .

[31]  Robert MullerAugust,et al.  Le ture Notes on Domain Theory , 2007 .

[32]  J. Norris Appendix: probability and measure , 1997 .

[33]  Dexter Kozen,et al.  A probabilistic PDL , 1983, J. Comput. Syst. Sci..

[34]  Enrique Alonso,et al.  The Life and Work of Leon Henkin: Essays on His Contributions , 2014 .

[35]  J. Słomiński,et al.  The theory of abstract algebras with infinitary operations , 1959 .

[36]  Helena Rasiowa,et al.  A proof of the completeness theorem of Grödel , 1950 .

[37]  M. Stone The theory of representations for Boolean algebras , 1936 .

[38]  Robert Goldblatt,et al.  The Countable Henkin Principle , 2014 .

[39]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[40]  Kim G. Larsen,et al.  Continuous Markovian Logic - From Complete Axiomatization to the Metric Space of Formulas , 2011, CSL.

[41]  Samson Abramsky,et al.  Domain Theory in Logical Form , 1991, LICS.