Atomic-scale mapping of quantum dots formed by droplet epitaxy.

Quantum dots (QDs) have applications in optoelectronic devices, quantum information processing and energy harvesting. Although the droplet epitaxy fabrication method allows for a wide range of material combinations to be used, little is known about the growth mechanisms involved. Here we apply direct X-ray methods to derive sub-ångström resolution maps of QDs crystallized from indium droplets exposed to antimony, as well as their interface with a GaAs (100) substrate. We find that the QDs form coherently and extend a few unit cells below the substrate surface. This facilitates a droplet-substrate exchange of atoms, resulting in core-shell structures that contain a surprisingly small amount of In. The work provides the first atomic-scale mapping of the interface between epitaxial QDs and a substrate, and establishes the usefulness of X-ray phasing techniques for this and similar systems.

[1]  Roy Clarke,et al.  Direct determination of epitaxial interface structure in Gd2O3 passivation of GaAs , 2002, Nature materials.

[2]  M. Pistol,et al.  Band-edge diagrams for strained III-V semiconductor quantum wells, wires, and dots , 2005, cond-mat/0501090.

[3]  Yizhak Yacoby,et al.  Direct structure determination of systems with two-dimensional periodicity , 2000 .

[4]  David J. Smith,et al.  Real-time x-ray studies of gallium nitride nanodot formation by droplet heteroepitaxy , 2007 .

[5]  Baolai Liang,et al.  Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100) , 2007 .

[6]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[7]  M. S. Skolnick,et al.  Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. , 2000, Physical review letters.

[8]  A. Zunger,et al.  Strain-induced interfacial hole localization in self-assembled quantum dots: Compressive InAs/ GaAs versus tensile InAs/ InSb , 2004 .

[9]  Yossi Rosenwaks,et al.  Nanoscale Mapping of Strain and Composition in Quantum Dots Using Kelvin Probe Force Microscopy , 2007 .

[10]  Arkady M. Satanin,et al.  Characteristics of transmission resonance in a quantum-dot superlattice , 2000 .

[11]  F. Rossi,et al.  Quantum information processing with semiconductor macroatoms. , 2000, Physical review letters.

[12]  A D Yoffe,et al.  Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems , 2001 .

[13]  A. Nozik Quantum dot solar cells , 2002 .

[14]  L. Samuelson,et al.  Structural properties of 〈111〉B -oriented III–V nanowires , 2006, Nature materials.

[15]  H. Eisele,et al.  Structure of InAs/GaAs quantum dots grown with Sb surfactant , 2006 .

[16]  V. Elser Solution of the crystallographic phase problem by iterated projections. , 2002, Acta crystallographica. Section A, Foundations of crystallography.

[17]  Eaglesham,et al.  Dislocation-free Stranski-Krastanow growth of Ge on Si(100). , 1990, Physical review letters.

[18]  Codrin Cionca,et al.  Resonant coherent Bragg rod analysis of strained epitaxial heterostructures , 2008 .

[19]  D. Schlom,et al.  Structural changes induced by metal electrode layers on ultrathin BaTiO 3 films , 2008 .

[20]  J. Millunchick,et al.  Interfacial structure, bonding and composition of InAs and GaSb thin films determined using coherent Bragg rod analysis , 2007 .

[21]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[22]  P. Galindo,et al.  High resolution electron microscopy of GaAs capped GaSb nanostructures , 2009, Applied Physics Letters.

[23]  D. Bimberg,et al.  106years extrapolated hole storage time in GaSb∕AlAs quantum dots , 2007 .

[24]  Vaidyanathan Subramanian,et al.  Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. , 2006, Journal of the American Chemical Society.

[25]  E. Lieb,et al.  Quantum Dots , 2019, Encyclopedia of Color Science and Technology.

[26]  Yossi Rosenwaks,et al.  High-density nanometer-scale InSb dots formation using droplets heteroepitaxial growth by MOVPE , 2006 .

[27]  U. Pietsch,et al.  Comparison of experimental and theoretical structure amplitudes and valence charge densities of GaAs , 1998 .

[28]  N. Koguchi,et al.  Growth of GaAs Epitaxial Microcrystals on an S-Terminated GaAs Substrate by Successive Irradiation of Ga and As Molecular Beams , 1993 .

[29]  G. Salamo,et al.  Configuration control of quantum dot molecules by droplet epitaxy , 2008 .

[30]  Satoshi Takahashi,et al.  New selective molecular‐beam epitaxial growth method for direct formation of GaAs quantum dots , 1993 .