Atomic-scale mapping of quantum dots formed by droplet epitaxy.
暂无分享,去创建一个
Roy Clarke | Yossi Paltiel | Yizhak Yacoby | Sergey Shusterman | R. Clarke | Y. Paltiel | S. Shusterman | Y. Yacoby | D. Kumah | Divine P Kumah
[1] Roy Clarke,et al. Direct determination of epitaxial interface structure in Gd2O3 passivation of GaAs , 2002, Nature materials.
[2] M. Pistol,et al. Band-edge diagrams for strained III-V semiconductor quantum wells, wires, and dots , 2005, cond-mat/0501090.
[3] Yizhak Yacoby,et al. Direct structure determination of systems with two-dimensional periodicity , 2000 .
[4] David J. Smith,et al. Real-time x-ray studies of gallium nitride nanodot formation by droplet heteroepitaxy , 2007 .
[5] Baolai Liang,et al. Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100) , 2007 .
[6] M. Grätzel. Photoelectrochemical cells : Materials for clean energy , 2001 .
[7] M. S. Skolnick,et al. Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. , 2000, Physical review letters.
[8] A. Zunger,et al. Strain-induced interfacial hole localization in self-assembled quantum dots: Compressive InAs/ GaAs versus tensile InAs/ InSb , 2004 .
[9] Yossi Rosenwaks,et al. Nanoscale Mapping of Strain and Composition in Quantum Dots Using Kelvin Probe Force Microscopy , 2007 .
[10] Arkady M. Satanin,et al. Characteristics of transmission resonance in a quantum-dot superlattice , 2000 .
[11] F. Rossi,et al. Quantum information processing with semiconductor macroatoms. , 2000, Physical review letters.
[12] A D Yoffe,et al. Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems , 2001 .
[13] A. Nozik. Quantum dot solar cells , 2002 .
[14] L. Samuelson,et al. Structural properties of 〈111〉B -oriented III–V nanowires , 2006, Nature materials.
[15] H. Eisele,et al. Structure of InAs/GaAs quantum dots grown with Sb surfactant , 2006 .
[16] V. Elser. Solution of the crystallographic phase problem by iterated projections. , 2002, Acta crystallographica. Section A, Foundations of crystallography.
[17] Eaglesham,et al. Dislocation-free Stranski-Krastanow growth of Ge on Si(100). , 1990, Physical review letters.
[18] Codrin Cionca,et al. Resonant coherent Bragg rod analysis of strained epitaxial heterostructures , 2008 .
[19] D. Schlom,et al. Structural changes induced by metal electrode layers on ultrathin BaTiO 3 films , 2008 .
[20] J. Millunchick,et al. Interfacial structure, bonding and composition of InAs and GaSb thin films determined using coherent Bragg rod analysis , 2007 .
[21] Michael Grätzel,et al. Photoelectrochemical cells , 2001, Nature.
[22] P. Galindo,et al. High resolution electron microscopy of GaAs capped GaSb nanostructures , 2009, Applied Physics Letters.
[23] D. Bimberg,et al. 106years extrapolated hole storage time in GaSb∕AlAs quantum dots , 2007 .
[24] Vaidyanathan Subramanian,et al. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. , 2006, Journal of the American Chemical Society.
[25] E. Lieb,et al. Quantum Dots , 2019, Encyclopedia of Color Science and Technology.
[26] Yossi Rosenwaks,et al. High-density nanometer-scale InSb dots formation using droplets heteroepitaxial growth by MOVPE , 2006 .
[27] U. Pietsch,et al. Comparison of experimental and theoretical structure amplitudes and valence charge densities of GaAs , 1998 .
[28] N. Koguchi,et al. Growth of GaAs Epitaxial Microcrystals on an S-Terminated GaAs Substrate by Successive Irradiation of Ga and As Molecular Beams , 1993 .
[29] G. Salamo,et al. Configuration control of quantum dot molecules by droplet epitaxy , 2008 .
[30] Satoshi Takahashi,et al. New selective molecular‐beam epitaxial growth method for direct formation of GaAs quantum dots , 1993 .