The CARMA-NRO Orion Survey: Filament Formation via Collision-induced Magnetic Reconnection—the Stick in Orion A

A unique filament is identified in the Herschel maps of the Orion A giant molecular cloud. The filament, which we name the Stick, is ruler-straight and at an early evolutionary stage. Transverse position–velocity diagrams show two velocity components closing in on the Stick. The filament shows consecutive rings/forks in C18O (1−0) channel maps, which is reminiscent of structures generated by magnetic reconnection. We propose that the Stick formed via collision-induced magnetic reconnection (CMR). We use the magnetohydrodynamics code Athena++ to simulate the collision between two diffuse molecular clumps, each carrying an antiparallel magnetic field. The clump collision produces a narrow, straight, dense filament with a factor of >200 increase in density. The production of the dense gas is seven times faster than freefall collapse. The dense filament shows ring/fork-like structures in radiative transfer maps. Cores in the filament are confined by surface magnetic pressure. CMR can be an important dense-gas-producing mechanism in the Galaxy and beyond.

[1]  J. Stone,et al.  The Athena++ Adaptive Mesh Refinement Framework: Design and Magnetohydrodynamic Solvers , 2020, The Astrophysical Journal Supplement Series.

[2]  S. Glover,et al.  Dynamical cloud formation traced by atomic and molecular gas , 2020, Astronomy & Astrophysics.

[3]  J. Bally,et al.  The CARMA–NRO Orion Survey: Protostellar Outflows, Energetics, and Filamentary Alignment , 2020, The Astrophysical Journal.

[4]  P. McGehee,et al.  Star cluster formation in Orion A , 2020, Publications of the Astronomical Society of Japan.

[5]  J. D. Soler,et al.  Could bow-shaped magnetic morphologies surround filamentary molecular clouds? , 2019, Astronomy & Astrophysics.

[6]  R. Klessen,et al.  The Cloud Factory I: Generating resolved filamentary molecular clouds from galactic-scale forces , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  Benjamin Wu,et al.  GMC Collisions as Triggers of Star Formation. VII. The Effect of Magnetic Field Strength on Star Formation , 2019, The Astrophysical Journal.

[8]  A. Stutz,et al.  Gas velocity structure of the Orion A integral-shaped filament , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  Juan D. Soler,et al.  Using Herschel and Planck observations to delineate the role of magnetic fields in molecular cloud structure (Corrigendum) , 2019, Astronomy & Astrophysics.

[10]  R. Klessen,et al.  The CARMA-NRO Orion Survey: Core Emergence and Kinematics in the Orion A Cloud , 2019, The Astrophysical Journal.

[11]  M. Lombardi,et al.  3D shape of Orion A from Gaia DR2 , 2018, Astronomy & Astrophysics.

[12]  E. Feigelson,et al.  The APOGEE-2 Survey of the Orion Star-forming Complex. II. Six-dimensional Structure , 2018, The Astronomical Journal.

[13]  Astronomy,et al.  The CARMA-NRO Orion Survey , 2018, Astronomy & Astrophysics.

[14]  M. Lombardi,et al.  HP2 survey: III The California Molecular Cloud--A Sleeping Giant Revisited , 2017, 1708.07847.

[15]  Peter G. Martin,et al.  The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A , 2017, 1708.05426.

[16]  A. Goodman,et al.  The Green Bank Ammonia Survey: First Results of NH3 Mapping of the Gould Belt , 2017, 1704.06318.

[17]  C. Lada,et al.  PROTOSTARS AT LOW EXTINCTION IN ORION A , 2016, 1605.02732.

[18]  Stephan Schlemmer,et al.  The Cologne Database for Molecular Spectroscopy, CDMS, in the Virtual Atomic and Molecular Data Centre, VAMDC , 2016, 1603.03264.

[19]  R. B. Barreiro,et al.  Planck intermediate results: XXXIII. Signature of the magnetic field geometry of interstellar filaments in dust polarization maps , 2016 .

[20]  J. Pineda,et al.  THE JCMT GOULD BELT SURVEY: DENSE CORE CLUSTERS IN ORION B , 2016, 1602.00707.

[21]  Andrew Gould,et al.  Slingshot Mechanism in Orion: Kinematic Evidence For Ejection of Protostars by Filaments , 2015, 1512.04944.

[22]  C. Federrath On the universality of interstellar filaments: theory meets simulations and observations , 2015, 1510.05654.

[23]  S. E. Jaffa,et al.  Star formation triggered by cloud–cloud collisions , 2015, 1509.05287.

[24]  P. Padoan,et al.  SUPERNOVA DRIVING. I. THE ORIGIN OF MOLECULAR CLOUD TURBULENCE , 2015, 1509.04663.

[25]  J. Bally,et al.  NESTED SHELLS REVEAL THE REJUVENATION OF THE ORION–ERIDANUS SUPERBUBBLE , 2015, 1506.02426.

[26]  H. Yamamoto,et al.  THE TWO MOLECULAR CLOUDS IN RCW 38: EVIDENCE FOR THE FORMATION OF THE YOUNGEST SUPER STAR CLUSTER IN THE MILKY WAY TRIGGERED BY CLOUD–CLOUD COLLISION , 2015, 1504.05391.

[27]  J. Kainulainen,et al.  Evolution of column density distributions within Orion A , 2015, 1504.05188.

[28]  Vienna,et al.  THE RELATIONSHIP BETWEEN THE DUST AND GAS-PHASE CO ACROSS THE CALIFORNIA MOLECULAR CLOUD , 2015, 1503.03564.

[29]  A. Lazarian Reconnection Diffusion in Turbulent Fluids and Its Implications for Star Formation , 2014 .

[30]  M. Lombardi,et al.  Herschel-Planck dust optical-depth and column-density maps - I. Method description and results for Orion , 2014, 1404.0032.

[31]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[32]  S. Glover,et al.  On column density thresholds and the star formation rate , 2013, 1306.5714.

[33]  P. Hennebelle On the origin of non-self-gravitating filaments in the ISM , 2013, 1306.5452.

[34]  T. Robitaille,et al.  APLpy: Astronomical Plotting Library in Python , 2012 .

[35]  A. Lazarian,et al.  MAGNETIZATION OF CLOUD CORES AND ENVELOPES AND OTHER OBSERVATIONAL CONSEQUENCES OF RECONNECTION DIFFUSION , 2012, 1206.4698.

[36]  Zhi-Yun Li,et al.  EVIDENCE FOR CLOUD–CLOUD COLLISION AND PARSEC-SCALE STELLAR FEEDBACK WITHIN THE L1641-N REGION , 2011, 1110.6225.

[37]  G. Kowal,et al.  MAGNETOHYDRODYNAMIC SIMULATIONS OF RECONNECTION AND PARTICLE ACCELERATION: THREE-DIMENSIONAL EFFECTS , 2011, 1103.2984.

[38]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[39]  S. Glover,et al.  Approximations for modelling CO chemistry in GMCs: a comparison of approaches , 2011, 1102.0670.

[40]  R. C. Forrey,et al.  ROTATIONAL QUENCHING OF CO DUE TO H2 COLLISIONS , 2010, 1004.3923.

[41]  M. Lombardi,et al.  THE CALIFORNIA MOLECULAR CLOUD , 2009, 0908.0646.

[42]  G. Kowal,et al.  NUMERICAL TESTS OF FAST RECONNECTION IN WEAKLY STOCHASTIC MAGNETIC FIELDS , 2009, 0903.2052.

[43]  J. Bally Overview of the Orion Complex , 2008, 0812.0046.

[44]  E. Tasker,et al.  STAR FORMATION IN DISK GALAXIES. I. FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS VIA GRAVITATIONAL INSTABILITY AND CLOUD COLLISIONS , 2008, 0811.0207.

[45]  V. Wakelam,et al.  Polycyclic Aromatic Hydrocarbons in Dense Cloud Chemistry , 2008, 0802.3757.

[46]  R. Crutcher Magnetic fields in molecular clouds , 2007 .

[47]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[48]  C. W. Lee,et al.  Probing the Evolutionary Status of Starless Cores through N2H+ and N2D+ Observations , 2004, astro-ph/0409529.

[49]  M. Juvela,et al.  Numerical methods for non-LTE line radiative transfer: Performance and convergence characteristics , 2002, astro-ph/0208503.

[50]  V. Ossenkopf Molecular line emission from turbulent clouds , 2002 .

[51]  Di Li,et al.  H I Narrow Self-Absorption in Dark Clouds: Correlations with Molecular Gas and Implications for Cloud Evolution and Star Formation , 2002, astro-ph/0206396.

[52]  J. Lépine,et al.  SPH simulations of clumps formation by dissipative collisions of molecular clouds - II. Magnetic case , 2001 .

[53]  A. Lazarian,et al.  Reconnection in the Interstellar Medium , 1999 .

[54]  A. Lazarian,et al.  Reconnection in a Weakly Stochastic Field , 1998, astro-ph/9811037.

[55]  S. Miyama,et al.  An Origin of Filamentary Structure in Molecular Clouds , 1998 .

[56]  D. Ryu,et al.  Magnetohydrodynamics of Cloud Collisions in a Multiphase Interstellar Medium , 1998, astro-ph/9808174.

[57]  R. Klein,et al.  Bending Mode Instabilities and Fragmentation in Interstellar Cloud Collisions: A Mechanism for Complex Structure , 1998 .

[58]  C. Heiles A Holistic View of the Magnetic Field in the Eridanus/Orion Region , 1997 .

[59]  U. Washington,et al.  Hydrodynamics of Cloud Collisions in Two Dimensions: The Fate of Clouds in a Multiphase Medium , 1997, astro-ph/9706208.

[60]  J. E. Pringle,et al.  MAGNETIC RECONNECTION AND STAR FORMATION IN MOLECULAR CLOUDS , 1996 .

[61]  E. Herbst,et al.  New gas–grain chemical models of quiescent dense interstellar clouds: the effects of H2 tunnelling reactions and cosmic ray induced desorption , 1993 .

[62]  R. Wilson,et al.  Filamentary structure in the Orion molecular cloud , 1986 .

[63]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[64]  Eugene N. Parker,et al.  Sweet's mechanism for merging magnetic fields in conducting fluids , 1957 .

[65]  S. Bontemps,et al.  Special Feature Herschel-spire Observations of the Polaris Flare: Structure of the Diffuse Interstellar Medium at the Sub-parsec Scale , 2022 .

[66]  Astronomy Astrophysics Letter to the Editor Characterizing interstellar filaments with Herschel in IC 5146 ⋆,⋆⋆ , 2022 .