Polyakov effective action from functional renormalization group equation

Abstract We discuss the Polyakov effective action for a minimally coupled scalar field on a two dimensional curved space by considering a non-local covariant truncation of the effective average action. We derive the flow equation for the form factor in ∫ g R c k ( Δ ) R , and we show how the standard result is obtained when we integrate the flow from the ultraviolet to the infrared.

[1]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[2]  Roberto Percacci,et al.  Fixed points of higher-derivative gravity. , 2006, Physical review letters.

[3]  Frank Saueressig,et al.  Taming perturbative divergences in asymptotically safe gravity , 2009, 0902.4630.

[4]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[5]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[6]  Frank Saueressig,et al.  ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.

[7]  V. Mukhanov,et al.  Introduction to Quantum Effects in Gravity , 2007 .

[8]  Martin Reuter,et al.  Bare action and regularized functional integral of asymptotically safe quantum gravity , 2008, 0811.3888.

[9]  Functional integration over geometries , 1995, hep-th/9502109.

[10]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .

[11]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[12]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[13]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[14]  Frank Saueressig,et al.  On the Renormalization Group Flow of Gravity , 2007, 0712.0445.

[15]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[16]  A. Barvinsky,et al.  Covariant perturbation theory (II). Second order in the curvature. General algorithms , 1990 .

[17]  D. Litim Optimized renormalization group flows , 2001, hep-th/0103195.

[18]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .