Existence in the large for nonlinear delay evolution inclusions with nonlocal initial conditions

In this paper we provide a sufficient condition for the existence of C0-solutions for a class of nonlinear functional differential evolution equation of the form {u′(t)∈Au(t)+f(t),t∈R+,f(t)∈F(t,u(t),ut),t∈R+,u(t)=g(u)(t),t∈[−τ,0], where X is a real Banach space, A is the infinitesimal generator of a nonlinear compact semigroup, F:R+×X×C([−τ,0];D(A)¯)⇝X is a nonempty convex and weakly compact valued multi-function and g:Cb([−τ,+∞);D(A)¯)→C([−τ,0];D(A)¯).

[1]  Sergiu Aizicovici,et al.  Existence results for a class of abstract nonlocal Cauchy problems , 2000 .

[2]  L. Byszewski Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem , 1991 .

[3]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[4]  R. Cascaval,et al.  Existence of Periodic Solutions for a Class of Nonlinear Evolution Equations , 1994 .

[5]  A. Tesei,et al.  Existence and attractivity results for a class of degenerate functional-parabolic problems , 1987 .

[6]  Carja Viability, Invariance and Applications , 2013 .

[7]  J. Dugundji An extension of Tietze's theorem. , 1951 .

[8]  J. Garcia-Falset Existence results and asymptotic behavior for nonlocal abstract Cauchy problems , 2008 .

[9]  Existence and asymptotic stability of periodic solution for evolution equations with delays , 2011 .

[10]  Invariant sets for nonlinear evolution equations, Cauchy problems and periodic problems , 2004 .

[11]  Angela Paicu Periodic solutions for a class of differential inclusions in general Banach spaces , 2008 .

[12]  Simeon Reich,et al.  Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities , 2001 .

[13]  Haim Brezis,et al.  Semi-linear second-order elliptic equations in L 1 , 1973 .

[14]  I. I. Vrabie,et al.  Compactness Methods for Nonlinear Evolutions , 1995 .

[15]  S. Reich,et al.  INTEGRAL SOLUTIONS TO A CLASS OF NONLOCAL EVOLUTION EQUATIONS , 2010 .

[16]  I. I. Vrabie,et al.  A class of nonlinear evolution equations subjected to nonlocal initial conditions , 2010 .

[17]  K. Deng,et al.  Exponential Decay of Solutions of Semilinear Parabolic Equations with Nonlocal Initial Conditions , 1993 .

[18]  V. Staicu,et al.  Multivalued evolution equations with nonlocal initial conditions in Banach spaces , 2007 .

[19]  Haewon Lee,et al.  Nonlinear nonlocal Cauchy problems in Banach spaces , 2005, Appl. Math. Lett..

[20]  J. Diestel Remarks on Weak Compactness in L1(μ,X) , 1977, Glasgow Mathematical Journal.

[21]  V. Lakshmikantham,et al.  Nonlinear differential equations in abstract spaces , 1981 .

[22]  I. I. Vrabie,et al.  Existence for nonlinear functional differential equations , 1987 .

[23]  I. I. Vrabie Periodic solutions for nonlinear evolution equations in a Banach space , 1990 .

[24]  Haim Brezis,et al.  Sublinear elliptic equations in ℝn , 1992 .

[25]  Jesús Ildefonso Díaz Díaz,et al.  Existence for Reaction Diffusion Systems. A Compactness Method Approach , 1994 .

[26]  N. Hirano Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces , 1994 .

[27]  Charles Castaing,et al.  Periodic solutions of evolution problem associated with moving convex sets , 1995 .

[28]  Simeon Reich,et al.  Extension problems for accretive sets in Banach spaces , 1977 .

[29]  I. I. Vrabie Existence for nonlinear evolution inclusions with nonlocal retarded initial conditions , 2011 .

[30]  I. I. Vrabie,et al.  A class of strongly nonlinear functional differential equations , 1988 .

[31]  Simeon Reich,et al.  Anti-periodic solutions to a class of non-monotone evolution equations , 1998 .

[32]  Nikolaos S. Papageorgiou,et al.  Periodic solutions of nonlinear evolution inclusions , 1994 .

[33]  J. Hale Theory of Functional Differential Equations , 1977 .

[34]  I. Glicksberg A FURTHER GENERALIZATION OF THE KAKUTANI FIXED POINT THEOREM, WITH APPLICATION TO NASH EQUILIBRIUM POINTS , 1952 .