The Starlet Transform in Astronomical Data Processing : Application to Source Detection and Image Deconvolution

We begin with traditional source detection algorithms in astronomy. We then introduce the sparsity data model. The starlet wavelet transform serves as our main focus in this article. Sparse modeling, and noise modeling, are described. Applications to object detection and characterization, and to image filtering and deconvolution, are discussed. The multiscale vision model is a further development of this work, which can allow for image reconstruction when the point spread function is not known, or not known well. Bayesian and other algorithms are described for image restoration. A range of examples is used to illustrate the algorithms.

[1]  Albert Bijaoui,et al.  A multiscale vision model adapted to the astronomical images , 1995, Signal Process..

[2]  A. Llebaria,et al.  CAPELLIA: software for stellar photometry in dense fields with an irregular background , 1994 .

[3]  G. B. Smith,et al.  Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .

[4]  Mohamed-Jalal Fadili,et al.  Wavelets, Ridgelets, and Curvelets for Poisson Noise Removal , 2008, IEEE Transactions on Image Processing.

[5]  S. Djorgovski,et al.  Modelling of seeing effects in extragalactic astronomy and cosmology , 1983 .

[6]  T. Naylor An optimal extraction algorithm for imaging photometry , 1998 .

[7]  A. Moffat A Theoretical Investigation of Focal Stellar Images in the Photographic Emulsion and Application to Photographic Photometry , 1969 .

[8]  M. Bertero,et al.  Image deblurring with Poisson data: from cells to galaxies , 2009 .

[9]  Jean-Luc Starck,et al.  Faint source detection in ISOCAM images , 1999 .

[10]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[12]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[13]  W. Pence,et al.  Detailed bibliography on the surface photometry of galaxies , 1982 .

[14]  Fionn Murtagh,et al.  Image restoration with noise suppression using a multiresolution support. , 1995 .

[15]  Wolfgang Osten,et al.  Introduction to Inverse Problems in Imaging , 1999 .

[16]  M. Irwin,et al.  Automatic Analysis of Crowded Fields , 1985 .

[17]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[18]  Martin Greiner,et al.  Wavelets , 2018, Complex..

[19]  Monique Thonnat,et al.  Automatic morphological description of galaxies and classification by an expert system , 1985 .

[20]  Fionn Murtagh,et al.  Image Processing and Data Analysis - The Multiscale Approach , 1998 .

[21]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[22]  Y. Mellier,et al.  The XMM-LSS survey. Survey design and first results , 2003, astro-ph/0305191.

[23]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[24]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[25]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[26]  Jean-Luc Starck,et al.  Astronomical image and data analysis , 2002 .

[27]  S. Mallat A wavelet tour of signal processing , 1998 .

[28]  M. Bertero,et al.  The study of an iterative method for the reconstruction of images corrupted by Poisson and Gaussian noise , 2008 .

[29]  R. Kron Photometry of a complete sample of faint galaxies. , 1980 .

[30]  A. Bijaoui,et al.  Electronographic BV photometry of three distant clusters of galaxies. I: Observations and reduction techniques , 1986 .

[31]  Fionn Murtagh,et al.  Automatic Noise Estimation from the Multiresolution Support , 1998 .

[32]  Mohamed-Jalal Fadili,et al.  The Undecimated Wavelet Decomposition and its Reconstruction , 2007, IEEE Transactions on Image Processing.

[33]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[34]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[35]  Fionn Murtagh,et al.  Image restoration with noise suppression using the wavelet transform , 1994 .

[36]  B. Ripley,et al.  Bayesian deconvolution with prior knowledge of object location : applications to ground-based planetary images , 1992 .

[37]  Frank Natterer,et al.  Mathematical methods in image reconstruction , 2001, SIAM monographs on mathematical modeling and computation.

[38]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[39]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[40]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .

[41]  Jean-Luc Starck,et al.  Structure Detection in Low Intensity X-Ray Images using the Wavelet Transfor M Applied to Galaxy Cluster Cores Analysis , 1997, astro-ph/9707305.

[42]  Mohamed-Jalal Fadili,et al.  A Proximal Iteration for Deconvolving Poisson Noisy Images Using Sparse Representations , 2008, IEEE Transactions on Image Processing.

[43]  Masaaki Watanabe,et al.  Digital surface photometry of galaxies toward a quantitative classification. I - 20 galaxies in the Virgo cluster , 1982 .

[44]  R. Buonanno,et al.  Automated photographic photometry of stars in globular clusters. , 1983 .

[45]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..