Weak convergence for generalized semi-Markov processes

[1]  Ward Whitt,et al.  Continuity of Generalized Semi-Markov Processes , 1980, Math. Oper. Res..

[2]  Ward Whitt,et al.  Some Useful Functions for Functional Limit Theorems , 1980, Math. Oper. Res..

[3]  R. Schassberger Insensitivity of Steady-state Distributions of Generalized Semi-Markov Processes. Part II , 1977 .

[4]  D. Iglehart,et al.  Discrete time methods for simulating continuous time Markov chains , 1976, Advances in Applied Probability.

[5]  Rolf Schassberger,et al.  On the Equilibrium Distribution of a Class of Finite-State Generalized Semi-Markov Processes , 1976, Math. Oper. Res..

[6]  Michael A. Crane,et al.  Simulating Stable Stochastic Systems, IV: Approximation Techniques , 1975 .

[7]  Michael A. Crane,et al.  Simulating Stable Stochastic Systems: III. Regenerative Processes and Discrete-Event Simulations , 1975, Oper. Res..

[8]  W. Whitt The continuity of queues , 1974, Advances in Applied Probability.

[9]  Ward Whitt,et al.  Heavy Traffic Limit Theorems for Queues: A Survey , 1974 .

[10]  D. Stoyan,et al.  Stabilitätssätze für eine Klasse homogener MARKOWscher Prozesse , 1974 .

[11]  D. P. Kennedy The continuity of the single server queue , 1972, Journal of Applied Probability.

[12]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[13]  M. J. Wichura ON THE CONSTRUCTION OF ALMOST UNIFORMLY CONVERGENT RANDOM VARIABLES WITH GIVEN WEAKLY CONVERGENT IMAGE LAWS , 1970 .

[14]  Dénes König,et al.  Verallgemeinerungen der Erlangschen und Engsetschen Formeln : Eine Methode in der Bedienungstheorie , 1967 .

[15]  Charles Stone Weak convergence of stochastic processes defined on semi-infinite time intervals , 1963 .

[16]  G. F. Newell,et al.  Introduction to the Theory of Queues. , 1963 .

[17]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .