On the modal logic of order-of-magnitude qualitative reasoning: a tableau calculus

This work is based on the multimodal logic L(MQ), recently introduced, which formalizes order-of-magnitude qualitative reasoning. The aim of this paper is to provide a sound and complete tableau method for the future fragment of L(MQ)

[1]  Olivier Raiman,et al.  Order of Magnitude Reasoning , 1986, Artif. Intell..

[2]  Benjamin Kuipers,et al.  Proving Properties of Continuous Systems: Qualitative Simulation and Temporal Logic , 1997, Artif. Intell..

[3]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[4]  Brandon Bennett,et al.  Modal Logics for Qualitative Spatial Reasoning , 1996, Log. J. IGPL.

[5]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[6]  F. Wolter,et al.  Qualitative spatiotemporal representation and reasoning: a computational perspective , 2003 .

[7]  Philippe Dague Numeric Reasoning with Relative Orders of Magnitude , 1993, AAAI.

[8]  Anthony G. Cohn,et al.  Multi-Dimensional Modal Logic as a Framework for Spatio-Temporal Reasoning , 2002, Applied Intelligence.

[9]  D. Gabbay,et al.  Handbook of Philosophical Logic, Volume II. Extensions of Classical Logic , 1986 .

[10]  John P. Burgess,et al.  Basic Tense Logic , 1984 .

[11]  Núria Agell,et al.  Consistent Relative and Absolute Order-of-Magnitude Models , 2002 .

[12]  Michael L. Mavrovouniotis,et al.  Reasoning with Orders of Magnitude and Approximate Relations , 1987, AAAI.

[13]  Philippe Dague Symbolic Reasoning with Relative Orders of Magnitude , 1993, IJCAI.

[14]  D. Gabbay,et al.  Handbook of tableau methods , 1999 .

[15]  Manuel Ojeda-Aciego,et al.  A Multimodal Logic Approach to Order of Magnitude Qualitative Reasoning with Comparability and Negligibility Relations , 2005, Fundam. Informaticae.

[16]  Wolfgang Rautenberg,et al.  Modal tableau calculi and interpolation , 1983, J. Philos. Log..