Killing epsilons with a dagger: A coalgebraic study of systems with algebraic label structure

We propose an abstract framework for modeling state-based systems with internal behavior as e.g. given by silent or ϵ -transitions. Our approach employs monads with a parametrized fixpoint operator † to give a semantics to those systems and implement a sound procedure of abstraction of the internal transitions, whose labels are seen as the unit of a free monoid. More broadly, our approach extends the standard coalgebraic framework for state-based systems by taking into account the algebraic structure of the labels of their transitions. This allows to consider a wide range of other examples, including Mazurkiewicz traces for concurrent systems.

[1]  Jeffrey D. Ullman,et al.  Introduction to automata theory, languages, and computation, 2nd edition , 2001, SIGA.

[2]  A. Mazurkiewicz Concurrent Program Schemes and their Interpretations , 1977 .

[3]  Gordon D. Plotkin,et al.  Towards a mathematical operational semantics , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[4]  P. T. Johnstone,et al.  Adjoint Lifting Theorems for Categories of Algebras , 1975 .

[5]  Ichiro Hasuo,et al.  Generic Forward and Backward Simulations , 2006, CONCUR.

[6]  Alexander Moshe Rabinovich A Complete Axiomatisation for Trace Congruence of Finite State Behaviors , 1993, MFPS.

[7]  Jiří Adámek,et al.  Free algebras and automata realizations in the language of categories , 1974 .

[8]  Michael Hauhs,et al.  Algebrais-Coalgebraic recursion theory of histroy-dependent dynamical system models , 2014 .

[9]  Alexandra Silva,et al.  A Coalgebraic View of ε-Transitions , 2013, CALCO.

[10]  M. Barr Coequalizers and free triples , 1970 .

[11]  Pawel Sobocinski,et al.  Relational Presheaves as Labelled Transition Systems , 2012, CMCS.

[12]  Alexander Kurz,et al.  On Coalgebras over Algebras , 2010, CMCS@ETAPS.

[13]  Jirí Adámek,et al.  Equational properties of iterative monads , 2010, Inf. Comput..

[14]  Soichiro Hidaka,et al.  A parameterized graph transformation calculus for finite graphs with monadic branches , 2013, PPDP.

[15]  Philip Wadler,et al.  A Syntax for Linear Logic , 1993, MFPS.

[16]  Jurriaan Rot,et al.  Presenting Distributive Laws , 2013, CALCO.

[17]  Stefan Milius,et al.  Complete Iterativity for Algebras with Effects , 2009, CALCO.

[18]  Jirí Adámek,et al.  On tree coalgebras and coalgebra presentations , 2004, Theor. Comput. Sci..

[19]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[20]  Jurriaan Rot,et al.  Presenting Distributive Laws , 2013, CALCO.

[21]  Fabio Gadducci,et al.  The tile model , 2000, Proof, Language, and Interaction.

[22]  P. J. Freyd Applications of Categories in Computer Science: Remarks on algebraically compact categories , 1992 .

[23]  Philip S. Mulry,et al.  Lifting Theorems for Kleisli Categories , 1993, MFPS.

[24]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[25]  Jirí Adámek,et al.  Elgot theories: a new perspective on the equational properties of iteration , 2011, Math. Struct. Comput. Sci..

[26]  Ana Sokolova,et al.  Generic Trace Semantics via Coinduction , 2007, Log. Methods Comput. Sci..

[27]  G. Kelly A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on , 1980, Bulletin of the Australian Mathematical Society.

[28]  Z. Ésik,et al.  Iteration Theories: The Equational Logic of Iterative Processes , 1993 .

[29]  Reiko Heckel,et al.  Algebra and Coalgebra in Computer Science , 2013, Lecture Notes in Computer Science.