Modelling and numerical approximation for the nonconservative bitemperature Euler model

This paper is devoted to the study of the nonconservative bitemperature Euler system. We firstly introduce an underlying two species kinetic model coupled with the Poisson equation. The bitemperature Euler system is then established from this kinetic model according to an hydrodynamic limit. A dissipative entropy is proved to exist and a solution is defined to be admissible if it satisfies the related dissipation property. Next, four different numerical methods are presented. Firstly, the kinetic model gives rise to kinetic schemes for the fluid system. The second approach belongs to the family of the discrete BGK schemes introduced by Aregba–Driollet and Natalini. Finally, a quasi-linear relaxation approach and a Lagrange-remap scheme are considered.

[1]  R. Natalini A Discrete Kinetic Approximation of Entropy Solutions to Multidimensional Scalar Conservation Laws , 1998 .

[2]  Richard Saurel,et al.  Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures , 2009, J. Comput. Phys..

[3]  Christophe Chalons,et al.  Computing material fronts with a Lagrange-Projection approach , 2010, 1012.4561.

[4]  C. Parés Numerical methods for nonconservative hyperbolic systems: a theoretical framework. , 2006 .

[5]  F. Coquel,et al.  Numerical Methods for Weakly Ionized Gas , 1998 .

[6]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[7]  Jérôme Breil,et al.  Multi-material ALE computation in inertial confinement fusion code CHIC , 2011 .

[8]  F. Bouchut Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws , 1999 .

[9]  B. Hamel Kinetic Model for Binary Gas Mixtures , 1965 .

[10]  C. Bardos,et al.  Knudsen Layer for Gas Mixtures , 2003 .

[11]  B. Perthame,et al.  A kinetic scheme for the Saint-Venant system¶with a source term , 2001 .

[12]  Tai-Ping Liu Hyperbolic conservation laws with relaxation , 1987 .

[13]  J. Schneider,et al.  Derivation of BGK models for mixtures , 2012 .

[14]  B. Perthame,et al.  A Consistent BGK-Type Model for Gas Mixtures , 2002 .

[15]  Pierre Degond,et al.  Transport coefficients of plasmas and disparate mass binary gases , 1996 .

[16]  Philippe G. LeFloch,et al.  Why many theories of shock waves are necessary: kinetic relations for non-conservative systems , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[17]  B. Perthame,et al.  Boltzmann type schemes for gas dynamics and the entropy property , 1990 .

[18]  Luc Mieussens,et al.  Local discrete velocity grids for deterministic rarefied flow simulations , 2014, J. Comput. Phys..

[19]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[20]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[21]  B. Perthame,et al.  Some New Godunov and Relaxation Methods for Two-Phase Flow Problems , 2001 .

[22]  Roberto Natalini,et al.  Discrete Kinetic Schemes for Multidimensional Systems of Conservation Laws , 2000, SIAM J. Numer. Anal..

[23]  John M. Greene,et al.  Improved Bhatnagar‐Gross‐Krook model of electron‐ion collisions , 1973 .

[24]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .

[25]  Rémi Abgrall,et al.  Modelling phase transition in metastable liquids: application to cavitating and flashing flows , 2008, Journal of Fluid Mechanics.

[26]  Samuel Kokh,et al.  An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes , 2016 .

[27]  Pierre Degond,et al.  THE ASYMPTOTICS OF COLLISION OPERATORS FOR TWO SPECIES OF PARTICLES OF DISPARATE MASSES , 1996 .

[28]  S. Brull An ellipsoidal statistical model for gas mixtures , 2015 .

[29]  Rémi Abgrall,et al.  A comment on the computation of non-conservative products , 2010, J. Comput. Phys..

[30]  X. Ribeyre,et al.  Linear and non-linear amplification of high-mode perturbations at the ablation front in HiPER targets , 2010 .

[31]  V. Garzó,et al.  A kinetic model for a multicomponent gas , 1989 .

[32]  T. F. Morse,et al.  Kinetic Model Equations for a Gas Mixture , 1964 .

[33]  Afeintou Sangam,et al.  A Local Entropy Minimum Principle for Deriving Entropy Preserving Schemes , 2012, SIAM J. Numer. Anal..

[34]  Shaoqiang Tang,et al.  Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems , 2004, Math. Comput..

[35]  Y. Zel’dovich,et al.  Gas Dynamics. (Book Reviews: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Vol. 1) , 1970 .

[36]  Marica Pelanti,et al.  A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves , 2014, J. Comput. Phys..

[37]  Stéphane Brull,et al.  Derivation of a BGK model for mixtures , 2012 .