Modelling and numerical approximation for the nonconservative bitemperature Euler model
暂无分享,去创建一个
Jérôme Breil | Denise Aregba-Driollet | Bruno Dubroca | Stéphane Brull | D. Aregba-Driollet | J. Breil | B. Dubroca | Élise Estibals | S. Brull | Elise Estibals
[1] R. Natalini. A Discrete Kinetic Approximation of Entropy Solutions to Multidimensional Scalar Conservation Laws , 1998 .
[2] Richard Saurel,et al. Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures , 2009, J. Comput. Phys..
[3] Christophe Chalons,et al. Computing material fronts with a Lagrange-Projection approach , 2010, 1012.4561.
[4] C. Parés. Numerical methods for nonconservative hyperbolic systems: a theoretical framework. , 2006 .
[5] F. Coquel,et al. Numerical Methods for Weakly Ionized Gas , 1998 .
[6] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[7] Jérôme Breil,et al. Multi-material ALE computation in inertial confinement fusion code CHIC , 2011 .
[8] F. Bouchut. Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws , 1999 .
[9] B. Hamel. Kinetic Model for Binary Gas Mixtures , 1965 .
[10] C. Bardos,et al. Knudsen Layer for Gas Mixtures , 2003 .
[11] B. Perthame,et al. A kinetic scheme for the Saint-Venant system¶with a source term , 2001 .
[12] Tai-Ping Liu. Hyperbolic conservation laws with relaxation , 1987 .
[13] J. Schneider,et al. Derivation of BGK models for mixtures , 2012 .
[14] B. Perthame,et al. A Consistent BGK-Type Model for Gas Mixtures , 2002 .
[15] Pierre Degond,et al. Transport coefficients of plasmas and disparate mass binary gases , 1996 .
[16] Philippe G. LeFloch,et al. Why many theories of shock waves are necessary: kinetic relations for non-conservative systems , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[17] B. Perthame,et al. Boltzmann type schemes for gas dynamics and the entropy property , 1990 .
[18] Luc Mieussens,et al. Local discrete velocity grids for deterministic rarefied flow simulations , 2014, J. Comput. Phys..
[19] Rémi Abgrall,et al. A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..
[20] F. Bouchut. Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .
[21] B. Perthame,et al. Some New Godunov and Relaxation Methods for Two-Phase Flow Problems , 2001 .
[22] Roberto Natalini,et al. Discrete Kinetic Schemes for Multidimensional Systems of Conservation Laws , 2000, SIAM J. Numer. Anal..
[23] John M. Greene,et al. Improved Bhatnagar‐Gross‐Krook model of electron‐ion collisions , 1973 .
[24] S. P. Gill,et al. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .
[25] Rémi Abgrall,et al. Modelling phase transition in metastable liquids: application to cavitating and flashing flows , 2008, Journal of Fluid Mechanics.
[26] Samuel Kokh,et al. An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes , 2016 .
[27] Pierre Degond,et al. THE ASYMPTOTICS OF COLLISION OPERATORS FOR TWO SPECIES OF PARTICLES OF DISPARATE MASSES , 1996 .
[28] S. Brull. An ellipsoidal statistical model for gas mixtures , 2015 .
[29] Rémi Abgrall,et al. A comment on the computation of non-conservative products , 2010, J. Comput. Phys..
[30] X. Ribeyre,et al. Linear and non-linear amplification of high-mode perturbations at the ablation front in HiPER targets , 2010 .
[31] V. Garzó,et al. A kinetic model for a multicomponent gas , 1989 .
[32] T. F. Morse,et al. Kinetic Model Equations for a Gas Mixture , 1964 .
[33] Afeintou Sangam,et al. A Local Entropy Minimum Principle for Deriving Entropy Preserving Schemes , 2012, SIAM J. Numer. Anal..
[34] Shaoqiang Tang,et al. Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems , 2004, Math. Comput..
[35] Y. Zel’dovich,et al. Gas Dynamics. (Book Reviews: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Vol. 1) , 1970 .
[36] Marica Pelanti,et al. A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves , 2014, J. Comput. Phys..
[37] Stéphane Brull,et al. Derivation of a BGK model for mixtures , 2012 .