Fixed point results for cyclic α-ψϕ-contractions with application to integral equations

In this paper, we introduce the notions of α - ? ? -contractive and cyclic α - ? ? -contractive mappings and establish the existence and uniqueness of fixed points for such mappings in complete metric-like spaces. The results presented here substantially generalize and extend several comparable results in the existing literature, in particular those of Karapinar and Salimi (2013). As an application, we prove new fixed point results for ? ? -graphic and cyclic ? ? -graphic contractive mappings. Moreover, some examples and an application to integral equations are given here to illustrate the usability of the obtained results.

[1]  Vasile Berinde,et al.  Common fixed points of mappings satisfying implicit contractive conditions , 2012, Fixed Point Theory and Applications.

[2]  N. Hussain,et al.  Fixed Points for -Graphic Contractions with Application to Integral Equations , 2013 .

[3]  Tomonari Suzuki,et al.  A new type of fixed point theorem in metric spaces , 2009 .

[4]  A. Ran,et al.  A fixed point theorem in partially ordered sets and some applications to matrix equations , 2003 .

[5]  P. Hitzler Generalized Metrics and Topology in Logic Programming Semantics , 2001 .

[6]  R. Agarwal,et al.  Fixed Point Theorems in Ordered Banach Spaces and Applications to Nonlinear Integral Equations , 2012 .

[7]  Bessem Samet,et al.  Generalized - Contractive Type Mappings and Related Fixed Point Theorems with Applications , 2012 .

[8]  A. Amini-Harandi,et al.  Metric-like spaces, partial metric spaces and fixed points , 2012, Fixed Point Theory and Applications.

[9]  Xian Zhang,et al.  Cone metric spaces and fixed point theorems of contractive mappings , 2007 .

[10]  J. Jachymski,et al.  The contraction principle for mappings on a metric space with a graph , 2007 .

[11]  Tomonari Suzuki,et al.  A generalized Banach contraction principle that characterizes metric completeness , 2007 .

[12]  S. Czerwik,et al.  Contraction mappings in $b$-metric spaces , 1993 .

[13]  Stojan Radenović,et al.  Common fixed points for self-mappings on partial metric spaces , 2012 .

[14]  K. L. Singh,et al.  Fixed-point theorems for contractive-type mappings , 1979 .

[15]  N. Hussain,et al.  Best Proximity Point Results for Modified --Proximal Rational Contractions , 2013 .

[16]  Fixed point theorems for $\alpha$--contractive mappings of Meir--Keeler type and applications , 2013, 1303.5798.

[17]  M. Khamsi,et al.  KKM mappings in metric type spaces , 2010 .

[18]  S. Radenović,et al.  Some new fixed point results in partial ordered metric spaces via admissible mappings , 2014, Fixed Point Theory and Applications.

[19]  Florin Bojor Fixed point theorems for Reich type contractions on metric spaces with a graph , 2012 .

[20]  Abdul Latif,et al.  Modified α-ψ-contractive mappings with applications , 2013 .

[22]  P. Salimi,et al.  Some new extensions of Edelstein-Suzuki-type fixed point theorem to G-metric and G-cone metric spaces , 2013 .

[23]  William A. Kirk,et al.  FIXED POINTS FOR MAPPINGS SATISFYING CYCLICAL CONTRACTIVE CONDITIONS , 2008 .

[24]  B. E. Rhoades,et al.  Fixed point theorems in generalized partially ordered G-metric spaces , 2010, Math. Comput. Model..

[25]  E. Karapınar,et al.  α-admissible mappings and related fixed point theorems , 2013, Journal of Inequalities and Applications.

[26]  Stojan Radenovic,et al.  Nonlinear ψ-quasi-contractions of Ćirić-type in partial metric spaces , 2012, Appl. Math. Comput..

[27]  Gabriela Petruşel,et al.  CYCLIC REPRESENTATIONS AND PERIODIC POINTS , 2005 .

[28]  Pasquale Vetro,et al.  Suzukiʼs type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces , 2012 .

[29]  S. G. Matthews,et al.  Partial Metric Topology , 1994 .

[30]  Mădălina Păcurar,et al.  Fixed point theory for cyclic φ-contractions , 2010 .

[31]  E. Karapınar,et al.  Cyclic ()-Contractions in Uniform Spaces and Related Fixed Point Results , 2014 .

[32]  C. T. Aage,et al.  The Results on Fixed Points in Dislocated and Dislocated Quasi-Metric Space , 2008 .

[34]  N. Hussain,et al.  Implicit Contractive Mappings in Modular Metric and Fuzzy Metric Spaces , 2014, TheScientificWorldJournal.

[35]  Masood Hussain Shah,et al.  KKM mappings in cone b-metric spaces , 2011, Comput. Math. Appl..

[36]  P. Vetro,et al.  Common fixed points for α-ψ-φ-contractions in generalized metric spaces , 2014 .

[37]  Hassen Aydi,et al.  Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces , 2011, Math. Comput. Model..

[38]  S. Radenović,et al.  Some Common Fixed Point Theorems in 0-σ-Complete Metric-Like Spaces , 2013 .

[40]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[41]  V. Popa SOME FIXED POINT THEOREMS FOR COMPATIBLE MAPPINGS SATISFYING AN IMPLICIT RELATION , 1999 .

[42]  S. Banach Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales , 1922 .

[43]  Juan J. Nieto,et al.  Existence and Uniqueness of Fixed Point in Partially Ordered Sets and Applications to Ordinary Differential Equations , 2007 .

[44]  Nawab Hussain,et al.  NONLINEAR CONTRACTIONS IN PARTIALLY ORDERED QUASI b-METRIC SPACES , 2012 .

[45]  Mohamed A. Khamsi,et al.  Remarks on Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings , 2010 .

[46]  C. Vetro,et al.  Some new fixed point results in non-Archimedean fuzzy metric spaces , 2013 .

[47]  P. Salimi,et al.  Fixed point results on metric-type spaces , 2014 .

[48]  Mujahid Abbas,et al.  Common Fixed Point for Two Pairs of Mappings Satisfying (E.A) Property in Generalized Metric Spaces , 2012 .

[49]  Naseer Shahzad,et al.  Some fixed point generalizations are not real generalizations , 2011 .

[50]  S. Czerwik,et al.  Nonlinear set-valued contraction mappings in b-metric spaces , 1998 .

[51]  Nawab Hussain,et al.  On the topology and wt-distance on metric type spaces , 2014 .

[52]  Multivalued Pseudo-Picard Operators and Fixed Point Results , 2013 .

[53]  Bessem Samet,et al.  Fixed point theorems for α–ψ-contractive type mappings , 2012 .

[54]  C. Vetro,et al.  Fixed point theorems for twisted (α,β)-ψ-contractive type mappings and applications , 2013 .

[55]  Z. Kadelburg,et al.  Common Fixed Point Results in Metric-Type Spaces , 2010 .

[56]  Z. Kadelburg,et al.  Suzuki-type fixed point results in metric type spaces , 2012 .

[57]  Nawab Hussain,et al.  Fixed Point Theory in -Complete Metric Spaces with Applications , 2014 .

[58]  P. P. Zabrejko K-metric and K-normed linear spaces: survey. , 1997 .

[59]  Hassen Aydi,et al.  Some Fixed Point Results in GP-Metric Spaces , 2012, J. Appl. Math..