Grazing incidence telescopes for x-ray astronomy

With grazing incidence telescopes, x-ray astronomy became a major branch of astrophysics. They are an indispensable tool in the study of >10 6 K thermal and non-thermal high energy phenomena occurring in objects from the solar system to the most distant sites in the universe. They have shed light upon dark matter and dark energy. Four cosmic mis- sions with focusing grazing incidence x-ray telescopes based upon the Wolter 1 geometry are currently in space. They include two observatory class facilities launched in 1999, NASA's high resolution x-ray and ESA's high throughput XMM-Newton. Two others are Japan's Suzaku, perform- ing a variety of studies, and the Swift XRT, which finds precise positions for the x-ray afterglows of gamma-ray bursts. Four new cosmic missions with Wolter-like focusing telescopes are scheduled for launch. They will pro- vide much broader bandwidth (NuSTAR and Astro-H), perform a new sky survey with more exposure time and a broader energy range than previous surveys (eROSITA), have an imaging detector with much better energy resolution (Astro-H), and measure polarization (GEMS). The Kirkpatrick-Baez and the lobster-eye are two types of potentially useful grazing incidence telescopes that have not yet been in orbit. It may not be possible to improve upon Chandra's 0.5 arcsec resolution without new technology. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). (DOI: 10.1117/1.OE.51.1.011010)

[1]  Martin C. Weisskopf,et al.  Chandra X-ray Observatory (CXO): overview , 1999, Astronomical Telescopes and Instrumentation.

[2]  Marcos Bavdaz,et al.  Silicon pore optics for astrophysical x-ray missions , 2007, SPIE Optical Engineering + Applications.

[3]  Kotaro Kohno,et al.  ASTE Observations of Warm Gas in Low-Mass Protostellar Envelopes: Different Kinematics between Submillimeter and Millimeter Lines , 2007 .

[4]  R. Giacconi,et al.  Evidence for x Rays From Sources Outside the Solar System , 1962 .

[5]  J. Kataoka,et al.  X-ray Emission Properties of Large Scale Jets, Hotspots and Lobes in Active Galactic Nuclei , 2006 .

[6]  S. Borgani,et al.  Wide Field X-ray Telescope: Mission Overview , 2010, 1010.6252.

[7]  Richard Willingale,et al.  The design, manufacture and predicted performance of Kirkpatrick-Baez silicon stacks for the International X-ray Observatory or similar applications , 2009, Optical Engineering + Applications.

[8]  William W. Zhang,et al.  Manufacture of mirror glass substrates for the NuSTAR mission , 2009, Optical Engineering + Applications.

[9]  B. Aschenbach,et al.  X-ray telescopes , 1985 .

[10]  I. Lapshov,et al.  ART-XC: a medium-energy x-ray telescope system for the Spectrum-R-Gamma mission , 2008, Astronomical Telescopes + Instrumentation.

[11]  L. Sveda,et al.  Lobster-eye x-ray telescopes: recent progress , 2003, SPIE Astronomical Telescopes + Instrumentation.

[12]  Mark L. Schattenburg,et al.  Development of a critical-angle transmission grating spectrometer for the International X-Ray Observatory , 2009, Optical Engineering + Applications.

[13]  W. Harris,et al.  New Results on Particle Acceleration in the Centaurus A Jet and Counterjet from a Deep Chandra Observation , 2007, 0710.1277.

[14]  J. R. P. Angel,et al.  Lobster eyes as X-ray telescopes. , 1979 .

[15]  D. Willingale,et al.  Developments of the off-plane x-ray grating spectrometer for IXO , 2010, Astronomical Telescopes + Instrumentation.

[16]  G. K. Skinner,et al.  Diffractive/refractive optics for high energy astronomy - I. Gamma-ray phase Fresnel lenses , 2001 .

[17]  J. Kataoka,et al.  X-Ray Emission Properties of Large-Scale Jets, Hot Spots, and Lobes in Active Galactic Nuclei , 2004, astro-ph/0411042.

[18]  Elmar Pfeffermann,et al.  eROSITA on SRG , 2010, Astronomical Telescopes + Instrumentation.

[19]  Tadayuki Takahashi,et al.  The Monte Carlo simulation framework of the ASTRO-H X-ray Observatory , 2010, Astronomical Telescopes + Instrumentation.

[20]  Finn Erland Christensen,et al.  Graded d-spacing multilayer telescope for high-energy x-ray astronomy , 1992, Optics & Photonics.

[21]  D. Attwood Soft X-Rays and Extreme Ultraviolet Radiation , 1999 .

[22]  Finn E. Christensen,et al.  Substrates and mounting techniques for the High-Energy Focusing Telescope (HEFT) , 1997, Optics & Photonics.

[23]  P. Kirkpatrick,et al.  Formation of optical images by X-rays. , 1948, Journal of the Optical Society of America.

[24]  Robert Chave,et al.  FIREBALL: the Faint Intergalactic medium Redshifted Emission Balloon: overview and first science flight results , 2010, Astronomical Telescopes + Instrumentation.

[25]  Marcos Bavdaz,et al.  Stacking of silicon pore optics for IXO , 2009, Optical Engineering + Applications.

[26]  Ryuichi Fujimoto,et al.  The X-Ray Observatory Suzaku , 2007 .

[27]  David L. Windt,et al.  Diffraction-limited astronomical X-ray imaging and X-ray interferometry using normal-incidence multilayer optics , 2003, SPIE Astronomical Telescopes + Instrumentation.

[28]  Riccardo Giacconi,et al.  A “telescope” for soft X‐ray astronomy , 1960 .

[29]  Rene Hudec,et al.  Lobster-eye x-ray telescope prototype , 1996, Optics & Photonics.

[30]  Wolfgang K. H. Schmidt,et al.  A proposed X-ray focusing device with wide field of view for use in X-ray astronomy , 1975 .

[31]  Christopher J. Burrows,et al.  Optimal grazing incidence optics and its application to wide-field X-ray imaging , 1992 .

[32]  Peter Mao,et al.  The Nuclear Spectroscopic Telescope Array (NuSTAR) , 2010, Astronomical Telescopes + Instrumentation.

[33]  Paolo Conconi,et al.  Optimization of grazing incidence mirrors and its application to surveying X-ray telescopes , 2001 .

[34]  Hideyo Kunieda,et al.  The X-ray telescope on board ASCA , 1995 .

[35]  L. A. Antonelli,et al.  Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997 , 1997, Nature.

[36]  Richard Willingale,et al.  First results from the testing of the thin shell adaptive optic prototype for high angular resolution x-ray telescopes , 2009, Optical Engineering + Applications.

[37]  S E Labov Figured grazing incidence mirrors from reheated float glass. , 1988, Applied optics.

[38]  E. Caroli,et al.  Coded aperture imaging in X- and gamma-ray astronomy , 1987 .

[39]  Yoshiharu Namba,et al.  The ASTRO-H Mission , 2009, Astronomical Telescopes + Instrumentation.

[40]  Paul B. Reid,et al.  Technology challenges of active x-ray optics for astronomy , 2010, Optical Engineering + Applications.

[41]  E. Ofek,et al.  An extremely luminous X-ray outburst at the birth of a supernova , 2008, Nature.

[42]  Bernd Aschenbach Boundary between geometric and wave optical treatment of x-ray mirrors , 2005, SPIE Optics + Photonics.

[43]  Andrew Lawrence,et al.  LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station , 2002, SPIE Optics + Photonics.

[44]  Daniele Spiga,et al.  Analytical evaluation of the X-ray scattering contribution to imaging degradation in grazing-incidence X-ray telescopes , 2007 .

[45]  Yoshiharu Namba,et al.  The current status of the reflector production for ASTRO-H/HXT , 2010, Astronomical Telescopes + Instrumentation.

[46]  IoA,et al.  Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters , 2007, 0706.0033.

[47]  R. Chase,et al.  Design Parameters of Paraboloid-Hyperboloid Telescopes for X-ray Astronomy. , 1972, Applied optics.

[48]  W. Cash X-ray optics: a technique for high resolution imaging. , 1987, Applied optics.

[49]  F. E. Christensen,et al.  Influence of a carbon over-coat on the X-ray reflectance of XEUS mirrors , 2007, 0707.2490.

[50]  Peter Predehl,et al.  Efficient Fresnel x-ray optics made simple. , 2007, Applied optics.

[51]  H. Wolter Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen , 1952 .

[52]  Lester M. Cohen,et al.  X-Ray Performance Of The LAMAR Protoflight Mirror , 1988, Optics & Photonics.

[53]  Alexey Vikhlinin,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS , 2008, 0812.2720.

[54]  Kent D. Irwin,et al.  Optimized transition-edge x-ray microcalorimeter with 2.4eV energy resolution at 5.9keV , 2005 .