A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins.

[1]  A. Woolley,et al.  Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[2]  S. Asher,et al.  Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel , 1999, Nature.

[3]  Dmytro Nykypanchuk,et al.  Brownian Motion of DNA Confined Within a Two-Dimensional Array , 2002, Science.

[4]  Gary W. Slater,et al.  Deformation, Stretching, and Relaxation of Single‐Polymer Chains: Fundamentals and Examples# , 2004 .

[5]  J. Sturm,et al.  Generation of large-area tunable uniform electric fields in microfluidic arrays for rapid DNA separation , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[6]  A. Majumdar,et al.  Field-effect control of protein transport in a nanofluidic transistor circuit , 2006 .

[7]  Jianping Fu,et al.  Continuous-flow biomolecule separation through patterned anisotropic nanofluidic sieving structure , 2006 .

[8]  Robert H. Austin,et al.  Ratchets: the problems with boundary conditions in insulating fluids , 2002 .

[9]  E. Wicke J. C. Giddings: Dynamics of Chromatography. Part. I: Principles and Theory. Marcel Dekker, New York, 1965. XII und 323 Seiten. 39 Abb. Preis:$ 11.50 , 1967 .

[10]  Harold G. Craighead,et al.  ENTROPIC TRAPPING AND ESCAPE OF LONG DNA MOLECULES AT SUBMICRON SIZE CONSTRICTION , 1999 .

[11]  R. Contreras,et al.  Total serum protein N‐glycome profiling on a capillary electrophoresis‐microfluidics platform , 2004, Electrophoresis.

[12]  H. Craighead,et al.  Separation of long DNA molecules in a microfabricated entropic trap array. , 2000, Science.

[13]  Thomas T. Perkins,et al.  Dynamical scaling of DNA diffusion coefficients , 1996 .

[14]  W. Deen Hindered transport of large molecules in liquid‐filled pores , 1987 .

[15]  T. Sakamoto,et al.  DNA size separation using artificially nanostructured matrix , 2003 .

[16]  G. Slater,et al.  Deformation, Stretching, and Relaxation of Single‐Polymer Chains: Fundamentals and Examples , 2004 .

[17]  S S Chan,et al.  Sorting by diffusion: an asymmetric obstacle course for continuous molecular separation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Calvin Giddings,et al.  Statistical theory for the equilibrium distribution of rigid molecules in inert porous networks. Exclusion chromatography , 1968 .

[19]  D Rodbard,et al.  Unified theory for gel electrophoresis and gel filtration. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Schellman,et al.  Flexibility of DNA , 1974, Biopolymers.

[21]  J. Calvin Giddings,et al.  Unified Separation Science , 1991 .

[22]  Jianping Fu,et al.  Molecular sieving in periodic free-energy landscapes created by patterned nanofilter arrays. , 2006, Physical review letters.

[23]  A. Oudenaarden,et al.  Brownian ratchets: molecular separations in lipid bilayers supported on patterned arrays. , 1999, Science.

[24]  Pascal Silberzan,et al.  Role of molecular size in ratchet fractionation. , 2002, Physical review letters.

[25]  J. Viovy Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms , 2000 .

[26]  Robert H. Austin,et al.  A DNA prism for high-speed continuous fractionation of large DNA molecules , 2002, Nature Biotechnology.

[27]  James M. Miller Dynamics of Chromatography , 1966 .

[28]  Jianping Fu,et al.  A Nanofilter Array Chip for Fast Gel-Free Biomolecule Separation. , 2005, Applied physics letters.

[29]  J. Sturm,et al.  Continuous Particle Separation Through Deterministic Lateral Displacement , 2004, Science.

[30]  G. Drouin,et al.  Migration of DNA through gels. , 1996, Methods in enzymology.

[31]  R. H. Austin,et al.  DNA electrophoresis in microlithographic arrays , 1992, Nature.

[32]  A. G. Ogston,et al.  The spaces in a uniform random suspension of fibres , 1958 .

[33]  Robert K. Scopes,et al.  Protein Purification: Principles and Practice , 1982 .

[34]  N. Stellwagen,et al.  The free solution mobility of DNA. , 1997, Biopolymers.

[35]  M. Muthukumar,et al.  Effects of Entropic Barriers on Polymer Dynamics , 1989 .

[36]  Pier Giorgio Righetti,et al.  Prefractionation techniques in proteome analysis , 2001, Proteomics.

[37]  P. Renaud,et al.  pH-controlled diffusion of proteins with different pI values across a nanochannel on a chip. , 2006, Nano letters.

[38]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[39]  K. Imamura,et al.  On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. , 2001, Journal of bioscience and bioengineering.

[40]  W. B. Caldwell,et al.  SDS capillary gel electrophoresis of proteins in microfabricated channels. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[41]  N. Kaji,et al.  Separation of long DNA molecules by quartz nanopillar chips under a direct current electric field. , 2004, Analytical chemistry.

[42]  J. Margolis,et al.  Polyacrylamide Gel-electrophoresis across a Molecular Sieve Gradient , 1967, Nature.

[43]  Jan C.T. Eijkel,et al.  Nanotechnology for membranes, filters and sieves , 2006 .

[44]  Frank G. Smith,et al.  Electrostatic effects on the partitioning of spherical colloids between dilute bulk solution and cylindrical pores , 1983 .

[45]  Albert van den Berg,et al.  Active transport: a new chemical separation method? , 2006, Lab on a chip.

[46]  D. Hoagland,et al.  Electrophoresis of flexible macromolecules: evidence for a new mode of transport in gels. , 1990, Science.

[47]  Gary W. Slater,et al.  Entropic Trapping of DNA During Gel Electrophoresis: Effect of Field Intensity and Gel Concentration , 1997 .