Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors

The temperature rise in sub-micrometer silicon devices is predicted at present by solving the heat diffusion equation based on the Fourier law. The accuracy of this approach needs to be carefully examined for semiconductor devices in which the channel length is comparable with or smaller than the phonon mean free path. The phonon mean free path in silicon at room temperature is near 300 nm and exceeds the channel length of contemporary transistors. This work numerically integrates the two-dimensional phonon Boltzmann transport equation (BTE) within the silicon region of a silicon-on-insulator (SOI) transistor. The BTE is solved together with the classical heat diffusion equation in the silicon dioxide layer beneath the transistor. The predicted peak temperature rise is nearly 160 percent larger than a prediction using the heat diffusion equation for the entire domain. The disparity results both from phonon-boundary scattering and from the small dimensions of the region of strongest electron-phonon energy transfer. This work clearly shows the importance of sub-continuum heat conduction in modern transistors and will facilitate the development of simpler calculation strategies, which are appropriate for commercial device simulators.

[1]  L. T. Su,et al.  Prediction and Measurement of Temperature Fields in Silicon-on-Insulator Electronic Circuits , 1995 .

[2]  K. Blotekjaer Transport equations for electrons in two-valley semiconductors , 1970 .

[3]  K. Goodson,et al.  Microscale Heat Conduction in Integrated Circuits and Their Constituent Films , 1999 .

[4]  D. E. Glass,et al.  ON THE NUMERICAL SOLUTION OF HYPERBOLIC HEAT CONDUCTION , 1985 .

[5]  Kenneth E. Goodson Thermal Conduction in Nonhomogeneous CVD Diamond Layers in Electronic Microstructures , 1996 .

[6]  C. Moglestue,et al.  Ensemble Monte Carlo particle investigation of hot electron induced source‐drain burnout characteristics of GaAs field‐effect transistors , 1995 .

[7]  W. Little The Transport of Heat Between Dissimilar Solids at Low Temperatures , 1959 .

[8]  Kenneth E. Goodson,et al.  Phonon scattering in silicon films with thickness of order 100 nm , 1999 .

[9]  B. Armstrong Two-fluid theory of thermal conductivity of dielectric crystals , 1981 .

[10]  S. Ramaswamy,et al.  Heat flow analysis for EOS/ESD protection device design in SOI technology , 1997 .

[11]  Gang Chen,et al.  Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles , 1996 .

[12]  R. Stephens Low-Temperature Specific Heat and Thermal Conductivity of Noncrystalline Dielectric Solids , 1973 .

[13]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[14]  F. A. Buot,et al.  Numerical simulation of hot-electron effects on source-drain burnout characteristics of GaAs power FETs , 1984 .

[15]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[16]  Gerhard K. M. Wachutka,et al.  Nonisothermal device simulation using the 2D numerical process/device simulator TRENDY and application to SOI-devices , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[17]  E. H. Sondheimer,et al.  The mean free path of electrons in metals , 2001 .

[18]  Arun Majumdar,et al.  Transient ballistic and diffusive phonon heat transport in thin films , 1993 .

[19]  C. Kittel Introduction to solid state physics , 1954 .

[20]  Gerhard K. M. Wachutka,et al.  Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[21]  A. Majumdar,et al.  Concurrent thermal and electrical modeling of sub‐micrometer silicon devices , 1996 .

[22]  Gang Chen,et al.  Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures , 1997 .

[23]  Patrick E. Phelan,et al.  Application of Diffuse Mismatch Theory to the Prediction of Thermal Boundary Resistance in Thin-Film High-Tc Superconductors , 1996, Microelectromechanical Systems (MEMS).

[24]  A. Majumdar Microscale Heat Conduction in Dielectric Thin Films , 1993 .

[25]  A. Majumdar,et al.  Microscale energy transport , 1998 .

[26]  P. Fulde,et al.  Low-Temperature Specific Heat and Thermal Conductivity of Noncrystalline Solids , 1971 .

[27]  E. Lewis,et al.  Computational Methods of Neutron Transport , 1993 .

[28]  R. F. Warming,et al.  Radiative transport and wall temperature slip in an absorbing planar medium , 1965 .

[29]  Scattering Theory of Carrier Transport in Semiconductor Devices , 1998 .

[30]  F. W. Kellaway,et al.  Advanced Engineering Mathematics , 1969, The Mathematical Gazette.

[31]  M. G. Holland Analysis of Lattice Thermal Conductivity , 1963 .

[32]  Majid T. Manzari,et al.  On numerical solution of hyperbolic heat conduction , 1999 .