Effects of stress and electric field on the electromechanical properties of Pb(Mg1∕3Nb2∕3)O3–0.32PbTiO3 single crystals

The effects of constant bias stress and electric field on the electromechanical behavior of ⟨001⟩-oriented Pb(Mg1∕3Nb2∕3)O3–0.32PbTiO3 (PMN–0.32PT) relaxor ferroelectric single crystals have been investigated. Both unipolar and bipolar responses are considered. Obtained results show that compressive bias stress with appropriate magnitude can significantly increase the piezoelectric constant. It is also found that bias electric field in the poling direction stabilizes the microstructure of PMN–0.32PT and reduces the hysteresis loss. The observed effects of bias stress and bias electric field on the electromechanical properties of ⟨001⟩-oriented PMN–0.32PT single crystals can be interpreted in terms of phase-transformation-induced polarization rotation through intermediate phases.

[1]  D. Viehland,et al.  Ferroelastic switching and elastic nonlinearity in 〈001〉-oriented Pb(Mg1/3Nb2/3)O3–PbTiO3 and Pb(Zn1/3Nb2/3)O3–PbTiO3 crystals , 2000 .

[2]  A. Bhalla,et al.  Morphotropic phase boundary in relaxor ferroelectric pb(mg1/3nb2/3)o3 ceramics , 1996 .

[3]  Thomas R. Shrout,et al.  Electric field dependence of piezoelectric properties for rhombohedral 0.955Pb(Zn1/3Nb2/3)O3– 0.045PbTiO3 single crystals , 1999 .

[4]  Thomas R. Shrout,et al.  Morphotropic phase boundary in Pb (Mg13Nb23) O3-PbTiO3 system , 1989 .

[5]  Christopher S. Lynch,et al.  Ferroelectric properties of [110], [001] and [111] poled relaxor single crystals: measurements and modeling , 2003 .

[6]  G. Shirane,et al.  Monoclinic phase in the relaxor-based piezoelectric/ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 system , 2001, cond-mat/0107276.

[7]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .

[8]  D. Viehland,et al.  Investigation of polarization switching in (001)c, (110)c, and (111)c oriented Pb(Zn1/3Nb2/3)O3–4.5%PbTiO3 crystals , 2004 .

[9]  Chih‐Long Tsai,et al.  Dielectric, hypersonic, and domain anomalies of (PbMg1/3Nb2/3O3)1-x(PbTiO3)x single crystals , 2001 .

[10]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[11]  Thomas R. Shrout,et al.  Enhanced Piezoelectric Property of Barium Titanate Single Crystals with Engineered Domain Configurations , 1999 .

[12]  Z. Ye,et al.  Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 single crystals , 2000 .

[13]  D. Viehland,et al.  Effect of uniaxial stress on the large-signal electromechanical properties of electrostrictive and piezoelectric lead magnesium niobate lead titanate ceramics , 2004 .

[14]  D. Viehland,et al.  Young's modulus and hysteretic losses of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3: single versus polycrystalline forms , 2003 .

[15]  W. Cao,et al.  Interweaving domain configurations in [001]-poled rhombohedral phase 0.68Pb(Mg1/3Nb2/3)O3–0.32PbTiO3 single crystals , 2003 .

[16]  Haiqing Xu,et al.  Third ferroelectric phase in PMNT single crystals near the morphotropic phase boundary composition , 2001 .

[17]  X. Tan,et al.  Indentation-induced domain switching in Pb(Mg1/3Nb2/3)O3–PbTiO3 crystal , 2001 .

[18]  D. Viehland,et al.  Electromechanical and elastic isotropy in the (011) plane of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 crystals: Inhomogeneous shearing of polarization , 2002 .

[19]  J. Currie,et al.  The determination of phases formed in AlSiCu/TiN/Ti contact metallization structure of integrated circuits by x-ray diffraction , 1998 .

[20]  D. Viehland,et al.  Electromechanical coupling coefficient of 〈001〉-oriented Pb(Mg1/3Nb2/3)O3–PbTiO3 cystals: Stress and temperature independence , 2001 .

[21]  J. Nièpce,et al.  Forming pressure dependence of the ferroelectric domain structure in green barium titanate pellets , 1995 .

[22]  A. Singh,et al.  Evidence for MB and MC phases in the morphotropic phase boundary region of (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3: A Rietveld study , 2002, cond-mat/0210108.

[23]  Haosu Luo,et al.  Crystal orientation dependence of dielectric and piezoelectric properties of tetragonal Pb(Mg1/3Nb2/3)O3–38%PbTiO3 single crystal , 2002 .

[24]  D. Vanderbilt,et al.  Electric-field induced polarization paths in P b ( Z r 1 − x Ti x ) O 3 alloys , 2001, cond-mat/0104335.

[25]  Zhenrong Li,et al.  Dielectric/ferroelectric response and phase transition of PMN0.32PT single crystal , 2002 .

[26]  D. Viehland,et al.  Effect of uniaxial stress on the electromechanical properties of 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 crystals and ceramics , 2001 .

[27]  D. Viehland,et al.  Stress dependence of the electromechanical properties of 〈001〉-oriented Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals: Performance advantages and limitations , 2001 .

[28]  N. Fleck,et al.  An evaluation of switching criteria for ferroelectrics under stress and electric field , 2003 .

[29]  Qiming Zhang,et al.  Phase transitional behavior and piezoelectric properties of the orthorhombic phase of Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals , 2001 .

[30]  Christopher S. Lynch,et al.  Relaxor ferroelectric PMN-32%PT crystals under stress and electric field loading: I-32 mode measurements , 2004 .