Port-Hamiltonian Systems with Several Space Variables: Dressing, Explicit Solutions and Energy Relations

We construct so-called Darboux transformations and solutions of the dynamical systems ∂ψ∂t = P rk =1 H k ( t ) ∂ψ∂ζ k ( H k ( t ) = H k ( t ) ∗ ), which are of a general interest and are also closely related to the port-Hamiltonian systems in the important and insufficiently studied case of several space variables. The corresponding energy relations are written down as well. The method is illustrated by several examples, where explicit solutions are given.

[1]  A. Sakhnovich Dressing for generalised linear Hamiltonian systems depending rationally on the spectral parameter and some applications , 2021, Discrete and Continuous Dynamical Systems.

[2]  Dorothée Normand-Cyrot,et al.  Stabilization of Discrete Port-Hamiltonian Dynamics via Interconnection and Damping Assignment , 2021, IEEE Control Systems Letters.

[3]  Roman O. Popovych,et al.  Point and contact equivalence groupoids of two-dimensional quasilinear hyperbolic equations , 2020, Appl. Math. Lett..

[4]  Arjan van der Schaft,et al.  Twenty years of distributed port-Hamiltonian systems: a literature review , 2020, IMA J. Math. Control. Inf..

[5]  Nathanael Skrepek Well-posedness of linear first order port-Hamiltonian Systems on multidimensional spatial domains , 2019, Evolution Equations & Control Theory.

[6]  K. Hashiguchi Equivalence , 2018, Fundamentals of Abstract Analysis.

[7]  A. Constantin,et al.  Dressing Method for the Degasperis–Procesi Equation , 2016, 1608.02120.

[8]  A. Sakhnovich Dynamical canonical systems and their explicit solutions , 2016, 1603.08709.

[9]  Hans Zwart,et al.  Linear wave systems on n-D spatial domains , 2014, Int. J. Control.

[10]  Hans Zwart,et al.  C0-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain , 2014, 1409.6524.

[11]  L. Sakhnovich,et al.  Inverse Problems and Nonlinear Evolution Equations: Solutions, Darboux Matrices and Weyl-Titchmarsh Functions , 2013 .

[12]  G. Teschl,et al.  Commutation methods for Schrödinger operators with strongly singular potentials , 2010, 1010.4902.

[13]  A. Sakhnovich Construction of the Solution of the Inverse Spectral Problem for a System Depending Rationally on the Spectral Parameter, Borg–Marchenko-Type Theorem and Sine-Gordon Equation , 2010, 1001.2409.

[14]  J. Cieśliński Algebraic construction of the Darboux matrix revisited , 2009, 0904.3987.

[15]  J. A. Villegas,et al.  A Port-Hamiltonian Approach to Distributed Parameter Systems , 2007 .

[16]  A. Schaft Port-Hamiltonian systems: an introductory survey , 2006 .

[17]  Juan Luis Varona,et al.  Port-Hamiltonian systems: an introductory survey , 2006 .

[18]  M. A. Kaashoek,et al.  Discrete skew selfadjoint canonical systems and the isotropic Heisenberg magnet model , 2004, math/0410438.

[19]  Zixiang Zhou,et al.  Darboux Transformations in Integrable Systems , 2005 .

[20]  Israel Gohberg,et al.  Theory and Applications of Volterra Operators in Hilbert Space , 2004 .

[21]  C. Tretter,et al.  Direct and inverse spectral problem for a system of differential equations depending rationally on the spectral parameter , 2001 .

[22]  Lev A. Sakhnovich,et al.  Spectral Theory of Canonical Differential Systems. Method of Operator Identities , 1999 .

[23]  G. Teschl,et al.  On the double commutation method , 1996 .

[24]  A. Sakhnovich,et al.  Dressing procedure for solutions of non-linear equations and the method of operator identities , 1994 .

[25]  F. Gesztesy A complete spectral characterization of the double commutation method , 1993 .

[26]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[27]  V. Marchenko Nonlinear Equations and Operator Algebras , 1987 .

[28]  V. Zakharov,et al.  On the integrability of classical spinor models in two-dimensional space-time , 1980 .