Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems

[1]  E. Reissner On one-dimensional finite-strain beam theory: The plane problem , 1972 .

[2]  A. Shabana,et al.  A Coordinate Reduction Technique for Dynamic Analysis of Spatial Substructures with Large Angular Rotations , 1983 .

[3]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[4]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[5]  E. Haug,et al.  Dynamics of Articulated Structures. Part I. Theory , 1986 .

[6]  T. R. Kane,et al.  Dynamics of a cantilever beam attached to a moving base , 1987 .

[7]  E. Haug,et al.  Geometric non‐linear substructuring for dynamics of flexible mechanical systems , 1988 .

[8]  Ahmed A. Shabana,et al.  Flexible Multibody Dynamics: Review of Past and Recent Developments , 1997 .

[9]  Ahmed A. Shabana,et al.  APPLICATION OF THE ABSOLUTE NODAL CO-ORDINATE FORMULATION TO MULTIBODY SYSTEM DYNAMICS , 1997 .

[10]  A. Shabana Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation , 1997 .

[11]  A. Shabana,et al.  Equivalence of the floating frame of reference approach and finite element formulations , 1998 .

[12]  Ahmed A. Shabana,et al.  Application of the Absolute Nodal Coordinate Formulation to Large Rotation and Large Deformation Problems , 1998 .

[13]  A. Shabana,et al.  Exact Modeling of the Spatial Rigid Body Inertia Using the Finite Element Method , 1998 .

[14]  Ahmed A. Shabana,et al.  Use of Cholesky Coordinates and the Absolute Nodal Coordinate Formulation in the Computer Simulation of Flexible Multibody Systems , 1999 .

[15]  A. Shabana,et al.  Performance of the Incremental and Non-Incremental Finite Element Formulations in Flexible Multibody Problems , 2000 .

[16]  A. Shabana,et al.  DEVELOPMENT OF SIMPLE MODELS FOR THE ELASTIC FORCES IN THE ABSOLUTE NODAL CO-ORDINATE FORMULATION , 2000 .

[17]  Mohamed A. Omar,et al.  A TWO-DIMENSIONAL SHEAR DEFORMABLE BEAM FOR LARGE ROTATION AND DEFORMATION PROBLEMS , 2001 .

[18]  R. Y. Yakoub,et al.  Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications , 2001 .

[19]  R. Y. Yakoub,et al.  Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory , 2001 .

[20]  Olivier A. Bauchau,et al.  Contact Conditions for Cylindrical, Prismatic, and Screw Joints in Flexible Multibody Systems , 2001 .

[21]  Y. Takahashi,et al.  Introduction of Damping Matrix into Absolute Nodal Coordinate Formulation , 2002 .

[22]  A. Shabana,et al.  Study of the Centrifugal Stiffening Effect Using the Finite Element Absolute Nodal Coordinate Formulation , 2002 .

[23]  Stefan von Dombrowski,et al.  Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates , 2002 .

[24]  Nobuyuki Shimizu,et al.  W-1-1-4 INTRODUCTION OF DAMPING MATRIX INTO ABSOLUTE NODAL COORDINATE FORMULATION , 2002 .

[25]  Jeong-Hyun Sohn,et al.  Large Oscillations of a Thin Cantilever Beam: Physical Experiments and Simulation Using the Absolute Nodal Coordinate Formulation , 2003 .

[26]  Tamer M. Wasfy,et al.  Computational strategies for flexible multibody systems , 2003 .

[27]  Aki Mikkola,et al.  On the Use of the Degenerate Plate and the Absolute Nodal Co-Ordinate Formulations in Multibody System Applications , 2003 .

[28]  Hiroyuki Sugiyama,et al.  Formulation of Three-Dimensional Joint Constraints Using the Absolute Nodal Coordinates , 2003 .

[29]  Oleg Dmitrochenko,et al.  Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation , 2003 .

[30]  Aki Mikkola,et al.  A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications , 2003 .

[31]  Simon Wiedemann,et al.  Comparison of Results in Flexible Multibody Dynamics Using Various Approaches , 2003 .

[32]  A. Mikkola,et al.  Description of Elastic Forces in Absolute Nodal Coordinate Formulation , 2003 .

[33]  A. Shabana,et al.  Use of the Finite Element Absolute Nodal Coordinate Formulation in Modeling Slope Discontinuity , 2003 .

[34]  Nobuyuki Kobayashi,et al.  A New Flexible Multibody Beam Element Based on the Absolute Nodal Coordinate Formulation Using the Global Shape Function and the Analytical Mode Shape Function , 2003 .

[35]  Aki Mikkola,et al.  A Non-Incremental Nonlinear Finite Element Solution for Cable Problems , 2003 .

[36]  J. Mayo,et al.  Describing Rigid-Flexible Multibody Systems Using Absolute Coordinates , 2003 .

[37]  Aki Mikkola,et al.  Multibody System Modeling of Leaf Springs , 2004 .

[38]  Hiroyuki Sugiyama,et al.  On the Use of Implicit Integration Methods and the Absolute Nodal Coordinate Formulation in the Analysis of Elasto-Plastic Deformation Problems , 2004 .

[39]  Hiroyuki Sugiyama,et al.  Application of Plasticity Theory and Absolute Nodal Coordinate Formulation to Flexible Multibody System Dynamics , 2004 .

[40]  Jeong-Hyun Sohn,et al.  Large Deflection Analysis of a Thin Plate: Computer Simulations and Experiments , 2004 .

[41]  Arend L. Schwab,et al.  Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Finite Element Method and Absolute Nodal Coordinate Formulation , 2005 .

[42]  Hiroyuki Sugiyama,et al.  Three-Dimensional Large Deformation Analysis of the Multibody Pantograph/Catenary Systems , 2005 .

[43]  Wan-Suk Yoo,et al.  A New Thin Spatial Beam Element Using the Absolute Nodal Coordinates: Application to a Rotating Strip , 2005 .

[44]  J. Domínguez,et al.  An Internal Damping Model for the Absolute Nodal Coordinate Formulation , 2005 .

[45]  H Sugiyama,et al.  Finite element analysis of the geometric stiffening effect. Part 2: Non-linear elasticity , 2005 .

[46]  H Sugiyama,et al.  Finite element analysis of the geometric stiffening effect. Part 1: A correction in the floating frame of reference formulation , 2005 .

[47]  Aki Mikkola,et al.  A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation , 2005 .

[48]  Aki Mikkola,et al.  A Linear Beam Finite Element Based on the Absolute Nodal Coordinate Formulation , 2005 .

[49]  Ahmed A. Shabana,et al.  Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation , 2005 .

[50]  Yoshiaki Terumichi,et al.  Dynamics of track/wheel systems on high-speed vehicles , 2005 .

[51]  Johannes Gerstmayr,et al.  Deformation modes in the finite element absolute nodal coordinate formulation , 2006 .

[52]  Aki Mikkola,et al.  Development of elastic forces for a large deformation plate element based on the absolute nodal coordinate formulation , 2006 .

[53]  Aki Mikkola,et al.  Three-Dimensional Beam Element Based on a Cross-Sectional Coordinate System Approach , 2006 .

[54]  Johannes Gerstmayr,et al.  Analysis of Thin Beams and Cables Using the Absolute Nodal Co-ordinate Formulation , 2006 .

[55]  Wan-Suk Yoo,et al.  Helicoseir as Shape of a Rotating String (I): 2D Theory and Simulation Using ANCF , 2006 .

[56]  Johannes Gerstmayr,et al.  Analysis of Stress and Strain in the Absolute Nodal Coordinate Formulation , 2006 .

[57]  Daniel García-Vallejo,et al.  Modeling of Belt-Drives Using a Large Deformation Finite Element Formulation , 2006 .

[58]  Jangbom Chai,et al.  Dynamic analysis of a pantograph–catenary system using absolute nodal coordinates , 2006 .

[59]  Jeong-Hyun Sohn,et al.  Large displacement of beam with base motion: Flexible multibody simulations and experiments , 2006 .

[60]  Hiroyuki Sugiyama,et al.  Coupled Deformation Modes in the Large Deformation Finite-Element Analysis: Problem Definition , 2007 .

[61]  A. Mikkola,et al.  A new locking-free shear deformable finite element based on absolute nodal coordinates , 2007 .

[62]  Jia-Zhen Hong,et al.  Nonlinear formulation for flexible multibody system with large deformation , 2007 .

[63]  Stefan Kaczmarczyk,et al.  The Study of the Tether Motion with Time-Varying Length Using the Absolute Nodal Coordinate Formulation with Multiple Nonlinear Time Scales , 2007 .

[64]  Arend L. Schwab,et al.  COMPARISON OF THREE-DIMENSIONAL FLEXIBLE THIN PLATE ELEMENTS FOR MULTIBODY DYNAMIC ANALYSIS: FINITE ELEMENT FORMULATION AND ABSOLUTE NODAL COORDINATE FORMULATION , 2007 .

[65]  Yoshihiro Suda,et al.  A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates , 2007 .

[66]  Hiroyuki Sugiyama,et al.  Railroad Vehicle Dynamics: A Computational Approach , 2007 .

[67]  Johannes Gerstmayr,et al.  A Large Deformation Planar Finite Element for Pipes Conveying Fluid Based on the Absolute Nodal Coordinate Formulation , 2007 .

[68]  Ahmed A. Shabana,et al.  Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams , 2007 .

[69]  Ahmed A. Shabana,et al.  Nonlinear dynamics of three-dimensional belt drives using the finite-element method , 2007 .

[70]  Aki Mikkola,et al.  A Procedure for the Inclusion of Transverse Shear Deformation in a Beam Element Based on the Absolute Nodal Coordinate Formulation , 2007 .

[71]  Zoran Ren,et al.  Implementation of an ANCF beam finite element for dynamic response optimization of elastic manipulators , 2008 .

[72]  A. Mikkola,et al.  Two Simple Triangular Plate Elements Based on the Absolute Nodal Coordinate Formulation , 2008 .

[73]  Johannes Gerstmayr,et al.  On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach , 2008 .

[74]  Ignacio Romero,et al.  A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations , 2008 .

[75]  Luis G. Maqueda,et al.  Slope discontinuities in the finite element absolute nodal coordinate formulation: gradient deficient elements , 2008 .

[76]  Tae-Won Park,et al.  The development of a sliding joint for very flexible multibody dynamics using absolute nodal coordinate formulation , 2008 .

[77]  Luis G. Maqueda,et al.  Effect of the centrifugal forces on the finite element eigenvalue solution of a rotating blade: a comparative study , 2008 .

[78]  A. Mikkola,et al.  A geometrically exact beam element based on the absolute nodal coordinate formulation , 2008 .

[79]  A. Shabana,et al.  Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations , 2008 .

[80]  D. García-Vallejo,et al.  Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements , 2008 .

[81]  Luis G. Maqueda,et al.  Numerical investigation of the slope discontinuities in large deformation finite element formulations , 2009 .

[82]  Yunqing Zhang,et al.  Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints , 2009 .

[83]  Ahmed A. Shabana,et al.  Use of general nonlinear material models in beam problems: Application to belts and rubber chains , 2009 .

[84]  Ahmed A. Shabana,et al.  On the integration of computer aided design and analysis using the finite element absolute nodal coordinate formulation , 2009 .

[85]  Ahmed A. Shabana,et al.  A rational finite element method based on the absolute nodal coordinate formulation , 2009 .

[86]  Jin He,et al.  The finite element absolute nodal coordinate formulation incorporated with surface stress effect to model elastic bending nanowires in large deformation , 2009 .

[87]  Lionel Manin,et al.  Introduction of damping into the flexible multibody belt-drive model: A numerical and experimental investigation , 2009 .

[88]  Ignacio Romero,et al.  A simple method to impose rotations and concentrated moments on ANC beams , 2009 .

[89]  Gregor Čepon,et al.  Dynamics of a belt-drive system using a linear complementarity problem for the belt–pulley contact description , 2009 .

[90]  K. Arczewski,et al.  Beam benchmark problems for validation of flexible multibody dynamics codes , 2009 .

[91]  Wan-Suk Yoo,et al.  Comparison of external damping models in a large deformation problem , 2009 .

[92]  D. García-Vallejo,et al.  Stability analysis of a substructured model of the rotating beam , 2009 .

[93]  Johannes Gerstmayr,et al.  A Detailed Comparison of the Absolute Nodal Coordinate and the Floating Frame of Reference Formulation in Deformable Multibody Systems , 2009 .

[94]  Qiang Tian,et al.  Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods , 2009 .

[95]  Johannes Gerstmayr HOTINT - A C++ ENVIRONMENT FOR THE SIMULATION OF MULTIBODY DYNAMICS SYSTEMS AND FINITE ELEMENTS , 2009 .

[96]  Ahmed A. Shabana,et al.  Clamped end conditions and cross section deformation in the finite element absolute nodal coordinate formulation , 2009 .

[97]  A. Mikkola,et al.  A formal procedure and invariants of a transition from conventional finite elements to the absolute nodal coordinate formulation , 2009 .

[98]  Ahmed A. Shabana,et al.  Uniqueness of the Geometric Representation in Large Rotation Finite Element Formulations , 2010 .

[99]  Ahmed A. Shabana,et al.  A new nonlinear multibody/finite element formulation for knee joint ligaments , 2010 .

[100]  Ahmed A. Shabana,et al.  ANCF finite element/multibody system formulation of the ligament/bone insertion site constraints , 2010 .

[101]  Yunqing Zhang,et al.  Simulation of planar flexible multibody systems with clearance and lubricated revolute joints , 2010 .

[102]  Ahmed A. Shabana,et al.  Rational Finite Elements and Flexible Body Dynamics , 2010 .

[103]  Lei Yu,et al.  Integration of absolute nodal elements into multibody system , 2010 .

[104]  Hiroyuki Sugiyama,et al.  Gradient Deficient Curved Beam Element Using the Absolute Nodal Coordinate Formulation , 2010 .

[105]  Lei Yu,et al.  Multibody Dynamic Model of Web Guiding System With Moving Web , 2010 .

[106]  Aki Mikkola,et al.  Beam Elements with Trapezoidal Cross Section Deformation Modes Based on the Absolute Nodal Coordinate Formulation , 2010 .

[107]  Ahmed A. Shabana,et al.  Integration of B-spline geometry and ANCF finite element analysis , 2010 .

[108]  X. Rui,et al.  Plate/shell element of variable thickness based on the absolute nodal coordinate formulation , 2010 .

[109]  Ahmed A. Shabana,et al.  A nonlinear visco-elastic constitutive model for large rotation finite element formulations , 2011 .

[110]  Sung Pil Jung,et al.  Dynamic analysis of rubber-like material using absolute nodal coordinate formulation based on the non-linear constitutive law , 2011 .

[111]  Margarida F. Machado,et al.  A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems , 2011 .

[112]  Qiang Tian,et al.  Dynamics of a large scale rigid–flexible multibody system composed of composite laminated plates , 2011 .

[113]  Johannes Gerstmayr,et al.  A continuum-mechanics interpretation of Reissner's non-linear shear-deformable beam theory , 2011 .

[114]  Hiroyuki Sugiyama,et al.  Spatial joint constraints for the absolute nodal coordinate formulation using the non-generalized intermediate coordinates , 2011 .

[115]  K. Nachbagauer,et al.  A Spatial Thin Beam Finite Element Based on the Absolute Nodal Coordinate Formulation Without Singularities , 2011 .

[116]  Dan Negrut,et al.  A PARALLEL GPU IMPLEMENTATION OF THE ABSOLUTE NODAL COORDINATE FORMULATION WITH A FRICTIONAL/CONTACT MODEL FOR THE SIMULATION OF LARGE FLEXIBLE BODY SYSTEMS , 2011 .

[117]  Gexue Ren,et al.  A modeling of sliding joint on one-dimensional flexible medium , 2011 .

[118]  Graham G. Sanborn,et al.  Curve-induced distortion of polynomial space curves, flat-mapped extension modeling, and their impact on ANCF thin-plate finite elements , 2011 .

[119]  Aki Mikkola,et al.  Digital Nomenclature Code for Topology and Kinematics of Finite Elements Based on the Absolute Nodal Co-Ordinate Formulation , 2011 .

[120]  Ahmed A. Shabana,et al.  Nonstructural geometric discontinuities in finite element/multibody system analysis , 2011 .

[121]  Johannes Gerstmayr,et al.  A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation , 2011 .

[122]  M. Salimi,et al.  Comparison of finite element method based on nodal displacement and absolute nodal coordinate formulation (ANCF) in thin shell analysis , 2011 .

[123]  Qiang Tian,et al.  Modal Analysis of a Rotating Thin Plate via Absolute Nodal Coordinate Formulation , 2011 .

[124]  A. Shabana,et al.  Use of B-Spline in the Finite Element Analysis: Comparison With ANCF Geometry , 2012 .

[125]  H. Sugiyama,et al.  Numerical convergence of finite element solutions of nonrational B-spline element and absolute nodal coordinate formulation , 2012 .

[126]  Aki Mikkola,et al.  Comparison between ANCF and B-spline surfaces , 2013 .

[127]  Johannes Gerstmayr,et al.  Structural and Continuum Mechanics Approaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to Buckling and Nonlinear Dynamic Examples , 2013 .