Oqla user's guide
暂无分享,去创建一个
[1] M. Hestenes. Multiplier and gradient methods , 1969 .
[2] Jack J. Dongarra,et al. A set of level 3 basic linear algebra subprograms , 1990, TOMS.
[3] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[4] M. J. D. Powell,et al. A method for nonlinear constraints in minimization problems , 1969 .
[5] Jean Charles Gilbert,et al. Inside Oqla and Qpalm , 2014 .
[6] A. F. Izmailov,et al. Newton-Type Methods for Optimization and Variational Problems , 2014 .
[7] Jack J. Dongarra,et al. Algorithm 656: an extended set of basic linear algebra subprograms: model implementation and test programs , 1988, TOMS.
[8] Philip Wolfe,et al. An algorithm for quadratic programming , 1956 .
[9] Jack J. Dongarra,et al. Algorithm 679: A set of level 3 basic linear algebra subprograms: model implementation and test programs , 1990, TOMS.
[10] R. Rockafellar. The multiplier method of Hestenes and Powell applied to convex programming , 1973 .
[11] Jean Charles Gilbert,et al. OQLA/QPALM – Convex quadratic optimization solvers using the augmented Lagrangian approach, with an appropriate behavior on infeasible or unbounded problems , 2014 .
[12] R. Rockafellar. Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming , 1974 .
[13] Jean Charles Gilbert,et al. Global linear convergence of an augmented Lagrangian algorithm for solving convex quadratic optimization problems , 2002 .
[14] Gerardo Toraldo,et al. On the Solution of Large Quadratic Programming Problems with Bound Constraints , 1991, SIAM J. Optim..
[15] Floyd J. Gould,et al. A general saddle point result for constrained optimization , 1973, Math. Program..
[16] Jean Charles Gilbert,et al. How the augmented Lagrangian algorithm can deal with an infeasible convex quadratic optimization problem , 2010 .